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Abstract—The proliferation of Wi-Fi-enabled devices makes
security a non-negotiable part of connectivity. As new attacks are
discovered that compromise the security of devices in the wireless
ecosystem, it is becoming increasingly crucial for intrusion
detection systems to generalize to these novel attacks. Machine
Learning gives us an approach to do that. In this paper, we
provide a feature elimination technique to narrow down the set
of features necessary to build such an ML-based solution that
takes into account possible class imbalance issues in intrusion
datasets. With features extracted using this technique from the
AWID dataset, we use a gradient-boosted model to show that
these features are necessary to generalize to new attack types in
the AWID test dataset.

Index Terms—Intrusion Detection, Machine Learning, Wi-Fi,
Wireless Security, AWID

I. INTRODUCTION

Wireless local area networks (WLANs) have become an
integral part of our daily lives and are widely used in various
settings including homes, offices, and public spaces. In 2022,
351 exabytes of monthly internet traffic were anticipated to
be generated globally, with Wi-Fi networks contributing 57%
[1]. Compared to 169 million hotspots in 2018, there will be
roughly 628 million public Wi-Fi hotspots worldwide by 2023
[2]. However, using Wi-Fi networks also increases the risk
of security breaches and unauthorized access. Kaspersky Lab
reported that about 28% of Wi-Fi hotspots worldwide were
unsecured, with the risk of data breaches of users [3].

To address the security issues, intrusion detection systems
(IDSs) have been proposed to detect and prevent malicious
activities in WLANs. An IDS is a security tool that detects
any activity violating networked systems’ security standards.
As the nature of technology and attack strategies are constantly
evolving, the IDS must be flexible and adaptable to counter
new attacks. To discriminate between legitimate activity and
intrusions, a machine learning-based Wi-Fi network intrusion
detection system is an innovative approach to address this
challenge. However, ML-based solutions haven’t performed
well in this field due to the class imbalance issue [4]. In
datasets, the amount of intrusive or anomalous data samples is
so low that it is difficult to train a model that reliably results
in low false-positive and false-negative rates, both of which
are important for an intrusion detection system.

The AWID dataset, which consists of Wi-Fi packet traffic,
is used in this study to investigate intrusion detection. We use
a gradient-boosted ML model and apply a modified feature

selection algorithm to select a set of features and show that
they are necessary for generalizing to unseen attack classes in
the AWID test dataset.

The rest of this paper is organized as follows. Section II
summarizes our contributions in light of present literature.
Section III presents our proposed framework. Section IV
analyses our results on the benchmark AWID dataset. Section
V concludes with a discussion of future possibilities.

II. RELATED WORK AND OUR CONTRIBUTION

Kolias et al. released the AWID dataset which contains
real traces of both normal and intrusive 802.11 traffic [5].
With all 154 features in the dataset, their best accuracy of
trained model was 96.20% using the J48 classifier, and 96.26%
when the number of features was reduced from 154 to 20 [5].
Udaya et al. implemented multiple ML algorithms with 111,
41, and 10 features acquired from various feature selection
methods to increase the detection accuracy on the AWID-
CLS-R dataset from 92.17% to 95.12% [6]. In [7], Wang et al.
reduced the feature set to 71 features, eliminating features with
zero variance and features with missing values and trained a
DNN-based machine learning model. For 4-class classification,
they had an average accuracy of 92.49%. In contrast, we have
achieved an overall test accuracy 99% after a first run through
LightGBM using all of our features.

Our features selection approach is extremely fast and ad-
dresses the dataset’s class imbalance when establishing the
features’ importance. The following are the contributions made
in this work:

1) The use of a novel feature selection technique that
considers the AWID dataset’s class imbalance and helps
us narrow down a list of features that are important in
detecting the categories.

2) The list of selected features is shown to be necessary for
generalizing to the specific attacks which are not present
in the training dataset.

3) We achieved a high detection rate for flooding attacks,
and an impersonation detection performance that is
competitive with recent deep learning methods, all with
a lower order of magnitude training time.

This work will contribute to the development of effective
and efficient intrusion detection systems for Wi-Fi networks.
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III. PROPOSED FRAMEWORK AND TESTBED

A. Dataset Overview

For this paper, we use the Aegean Wi-Fi Intrusion Dataset
(AWID) that was made public in 2014 by Kolias et. al. [5] [9].
There are two differentiating factors within the four different
datasets they offer.

The first is the number of class labels. The ATK variant
labels each sample with either ‘normal’ or the name of the
exact attack that it was a part of. The CLS variant reduces
the number of classes to four: ‘normal’, ‘impersonation’,
‘injection’, and ‘flooding’. The second differentiating factor
is the size of the dataset. The full dataset is denoted by F ,
and the reduced dataset is denoted by R.

We will be using the reduced dataset with four categories.
The distribution of each of the categories across the training
and test set is as follows:

As we can see, the class distribution is highly imbalanced,
and this issue stems from the nature of network traffic. Normal
internet traffic constitutes a significant portion of internet
traffic worldwide, and any trace of such traffic flow is bound
to have an imbalance of this sort. This imbalance will come
into play in our subsequent analysis as it adversely affects the
accuracy of machine learning models.

B. Preprocessing

There are 154 features in the AWID dataset. However, a
lot of these features have values missing in the majority of
samples. Specifically, management frames constitute a small
portion of the overall network trace, so all the fields corre-
sponding to management frames are empty for the majority of
the samples. We throw away all the features that are missing
the majority of their values.

Our motivation for doing so was two-fold. First, it is not
easy for a ML-model to observe patterns among features when
most of the values are missing. Second, given the amount of
missing data, there is no straightforward method to impute the
values without introducing bias. [5] used a number of models
to evaluate their performance on the whole feature set and a
reduced set consisting of 20 features. They found very little
difference in accuracy. We also eliminated all features with
constant values.

We further eliminated the following features: wlan.ra,
wlan.da, wlan.ta, wlan.sa and wlan.bssid. The domain of these
features is the space of MAC addresses. We found no easy way
to encode the information within them. We also eliminated
all time-related features except frame.time delta, since they

TABLE I: Class distribution in AWID dataset

AWID-CLS-R-Trn AWID-CLS-R-Tst

Normal 1,633,190 530,785
Impersonation 48,522 20,079

Injection 65,379 16,682
Flooding 48,484 8,079

Total 1,795,575 575,625

Fig. 1: Correlation matrix of dataset. Large square blocks
represent groups of features with the same values.

are tied closely to the AWID experiment and are unlikely to
generalize. The rest of the features with missing values were
imputed with the most-frequently occurring values.

C. Initial Feature Selection

Following the steps in III-B, we calculated the correlation
matrix of the dataset to eliminate perfectly correlated features.
The correlation matrix is visualized in Fig. 1. Note that this
matrix left out wlan.fc.ds.

From the matrix, we can see that certain groups of features
are highly correlated. The values of the features in each group
were identical in every sample. From each of these sets of
features, we only kept one feature, and eliminated the rest.

Next, among the remaining features, we identified three
categorical variables that can take on multiple values. Specif-
ically, wlan.fc.ds can take on 4 values (0–4) (but the presence
of only 3 were found on the entire dataset), wlan.fc.type
can take on 3 values (0–2), and wlan.fc.subtype can take
on 14 different values (0–13). We one-hot encoded these
features. By their very nature, machine learning models try to
identify significance in the magnitude of numbers. Since no
such significance exists within categorical features, it’s best
to replace a variable with N possible values with N binary
variables that show the presence/absence of each value. This
also allows us to narrow down the set of features to certain
values that each of these categorical values take.

D. Model Choice and Feature Elimination Technique

For this work, we adopt LightGBM as our main vehicle
for machine learning tasks. LightGBM belongs to a class
of popular models that employ Gradient Boosting. Gradient
boosting uses an ensemble of weak learners, usually decision
trees. At a high-level, it works like this: a weak learner learns
some weak (not too accurate) function for the problem at hand.
Each subsequent weak learner tries to amend the samples that
its previous weak learner got wrong. In this way, intuitively,
each weak learner moves a little bit towards the direction of
negative gradient of some cost function.

While our model of choice is able to report an explicit
feature importance score, their computation method naturally



Fig. 2: Diagram of feature selection technique. Steps 4, 5, and
6 are repeated for every feature.

assigns higher importance to continuous features or categorical
features with a large number of possible values, because they
appear more often in the branches of decision trees. Therefore,
for feature elimination, we use permutation importance.

Permutation importance works as follows: we first train a
model on the training dataset and calculate an accuracy metric
A on the validation dataset. Then, we separately permute
each of the features of the validation dataset and evaluate
the model’s accuracy on this transformed validation set to
get Aperm. The difference between the two accuracy scores
gives us a sense of the feature’s importance. For our purposes,
we chose to use the F1-score as the metric for permutation
importance. This is because of the class-imbalance issue in
the AWID dataset. Because the number of intrusive instances
are small, differences in accuracy will be small. By calculating
F1-score by treating the intrusive class as the positive class, we
heavily penalize those features that cause any appreciable level
of degradation in the intrusion class detection. Algorithm 1
lists the recipe for feature importance ranking concretely, and
the whole process is visualized in Fig. 2.

Algorithm 1 Feature Ranking Procedure

Initialize non-overlapping training and validation datasets
Train a model with the training dataset
Calculate baseline F1-score on validation set, Fbase

for each feature of the dataset do
Permute the values of the feature in validation dataset
Establish F1-score of this validation dataset, Fperm

Importance of feature: Fbase − Fperm

end for

(a) Full Dataset (b) Balanced Dataset

Fig. 3: Flooding detection trained on different sized datasets.
Balanced dataset training improves flooding detection.

IV. RESULTS AND ANALYSES

A. Flooding Detection

In order to look at the flooding case more generally, we
grouped each of the labels ‘normal’, ‘impersonation’, and
‘injection’ into a more general ‘non-flooding’ category. We
then trained our model for the binary classification of ‘non-
flooding’ and ‘flooding’ examples.

When trained on the entire training set, LightBGM achieved
an accuracy of 99.5% and an F1 score of 0.8, which is similar
to most of the approaches explored for detecting it. Fig. 3a
show these results. Similar to this model, most approaches also
report low false-positive rates. This was a strong indicator that
most models trained on this dataset were far more adept and
confident in their detection of non-flooding samples when the
actual category is also non-flooding. We also suspected that
this confidence on detecting actual non-flooding cases stems
from the class imbalance in the dataset.

To assess the impact of training on a balanced dataset, we
used a reduced sample of the training set, which contained
equal numbers of ‘non-flooding’ and ‘flooding’ examples. The
confusion matrix of this trained model is shown on Fig. 3b.
While not by a large margin, both the accuracy and F1 score
are higher for this model, even though its training set was an
order of magnitude smaller than the full training set.

To show the confidence level changes of the model in
identifying each of the types, we analyzed the distribution of
the predicted probabilities of the classes by our model. Tabel II
shows the mean predicted probabilities. This confirms when a
test sample is actually non-flooding, it identifies it as such with

TABLE II: Predicted Class Probabilities

Training on full
training dataset

Training on
balanced subset

Reported
Non-Flooding

Reported
Flooding

Reported
Non-Flooding

Reported
Flooding

Actual
Non-Flooding 0.9995 0.0005 0.9993 0.0007

Actual
Flooding 0.333 0.667 0.306 0.694



a lot more confidence than it does when reporting a flooding
sample as flooding. We also observed that after training with
the reduced, balanced training set, its true-class distinction
confidence on flooding samples increased by 3 percentage
points. This suggests that having more flooding examples
should be a viable way of increasing detection accuracy.

Next, we applied our feature elimination algorithm after
training on the small, balanced dataset. Table III shows the
9 features we shortlisted based on the largest drop in F1 score
on an unbalanced validation set sampled from the training set
(mutually exclusive with the balanced training sample).

We trained our model again with these 9 features and
got performance similar to those of the model trained with
balanced training set in Fig. 3a, Fig. 3b and Table II. The
accuracy for flooding dataset remained at 99.5% and we got
an F1 score of 0.81.

The ‘Normal Probability Split’ columns in Table IV show
a cross-examination of the results with the labels in the ATK
dataset. The specific categories that the model missed, namely
cts, power saving, probe request, and rts, were all missing
in the training dataset. Therefore, given the feature set, it
would seem that gradient-boosted models do not generalize to
flooding attack types that it hasn’t seen before during training.

Normally, a model reports a class in a classification problem
if its predicted probability is higher than that of the other
classes. Because of the lower confidence for ‘flooding’ cases
reported in Table II, we extracted another set of predictions
from the same model where we classified a sample as ‘flood-
ing’ if it’s predicted probability was above 1%, and ‘non-
flooding’ otherwise. The detection rate of ‘flooding’ type
jumped to 95.4%, and the cross-examination results with the
ATK dataset are shown in the ‘Flooding-favored Probability
Split’ columns of Table IV. Here, we see that it detected almost
all cts and probe request types. However, this came at the cost
of a high number of false positives.

B. Impersonation/Injection Detection

Detecting injection attacks from the AWID dataset has been
a very easy task for ML models, largely because all the specific
injection attacks present in the test dataset are also present
in the training dataset. Impersonation attacks, on the other
hand, have been difficult to classify. [5] obtained near-perfect
accuracy for injection attacks, but did poorly in impersonation
detection. Similarly, a one-vs-all classification of injection

TABLE III: Selected features for Flooding

Feature Drop in F1 score

frame.time delta 3.22
frame.len 40.59
radiotap.dbm antsignal 7.89
wlan.fc.retry 11.63
wlan.duration 26.85
wlan.seq 15.02
wlan.fc.type 0 83.7
wlan.fc.subtype 4 1.45
wlan.fc.subtype 10 0.06

attacks using LightGBM achieves an F1-score of 0.99. But
for impersonation detection, it achieves an F1-score of 0.13.

The authors in [8] suggest a two-phase intrusion detection
scheme in which they first distinguish between the three
classes ‘normal’, ‘flooding’, and the grouped class ‘Imper-
sonation/Injection’. If a sample is identified as ‘Imperson-
ation/Injection’, it is fed into the second-stage ML model
that differentiates between the two. The motivation for this
approach came from their earlier work in [10], where they
found that a Random Forest used for 4-class classification of
the reduced dataset misclassified most impersonation examples
as injections. While we couldn’t replicate their results, we
found that this approach implemented with LightGBM did
offer a better classification scheme for the combined class
‘Impersonation/Injection’ than the alternative of binary classi-
fication for Impersonation alone.

A first pass through LightGBM with our entire feature set
yielded an overall test accuracy of 98.5% and an F1-score for
‘Impersonation/Injection’ detection of 0.91. Fig. 4a shows the
confusion matrix of this model. While the detection of flooding
samples hasn’t improved, we get better overall detection of
‘Impersonation’ under the guise of ‘Impersonation/Injection’.

We then used the feature elimination technique to narrow
down the number of important features to 16. These 16
shortlisted features, along with the drop in F1-score that they
caused are listed in Table V.

Training our model again on this reduced feature set gives
the confusion matrix on Fig. 4b. As we can see, the detection
of ‘Impersonation/Injection’ did improve somewhat, but it also
came at the cost of an increased number of ‘normal’ samples
being flagged as malicious. The accuracy and F1-score remain
very similar at 98.5% and 0.91, respectively.

Table VI shows the cross examination with ATK dataset.

TABLE IV: Flooding Types Missed

Normal
Probability Split

Flooding-favored
Probability Split

Detected Missed Detected Missed

amok 477 0 477 0
beacon 565 34 599 0
cts 0 1759 1756 3
deauthentication 4441 4 4444 1
dissociation 78 6 84 0
power saving 0 165 0 165
probe request 0 369 367 2
rts 0 199 0 199

TABLE V: Selected Features for Impersonation & Injection

Feature Drop in
F1 score Feature Drop in

F1 score

frame.time delta 9.82 wlan.duration 28.07
frame.len 47.52 wlan.frag 10.86
radiotap.datarate 19.68 wlan.seq 2.03
radiotap.channel.type.cck 7.28 wlan.fc.ds 0x01 6.47
radiotap.dbm antsignal 10.75 wlan.fc.type 1 0.25
wlan.fc.frag 4.36 wlan.fc.subtype 0 54.9
wlan.fc.retry 1.68 wlan.fc.subtype 4 0.34
wlan.fc.protected 12.38 wlan.fc.subtype 5 0.19



(a) Full Feature Set (b) Reduced Feature Set

Fig. 4: Three class detection on different sized feature sets.
Reduced feature set improves detection of intrusion class.

The major reason why impersonation detection results are
usually bad is because simple one-vs-all classification fails
to pick up hirte attacks, a type missing from the training
dataset but constituting a major portion of the test dataset.
However, the first-stage three-class classification suggested in
[8] results in much better generalization to the unseen ‘hirte’
attack type, even though it sacrifices detection capacity of
chop chop attacks.

Since injection detection has been an easy problem for ma-
chine learning models, it is easy to differentiate between ‘in-
jection’ and ‘impersonation’ following the three-class model
above. The two-stage method somewhat dilutes the perfor-
mance we can get for injection classification alone. Therefore,
we propose the parallel use of two models. What these models
are, and the procedure to use them are listed in Algorithm 2.

This procedure lets us keep the perfect detectibility of
injection attacks (covering the chop chop attacks missed by
our three-class classifier), while simultaneously achieving the
higher detection rate of impersonation attacks lent by the three-
class classification. Following this, we achieve a detection rate
for impersonation of 83.6%.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we employed gradient boosting to explore
intrusion detectability in the AWID dataset. In particular, we
used a novel feature elimination technique to select a small
subset of features from the original feature set that is able to

TABLE VI: Impersonation & Injection Types Missed

One-vs-All Three Class
Detected Missed Detected Missed

Injection

arp 13644 0 13644 0
chop chop 2869 2 379 2492
fragmentation 167 0 167 0

Impersonation

cafe latte 379 0 370 9
evil twin 611 0 585 26
hirte 483 18606 15805 3284

Algorithm 2 Separating Impersonation and Injection

M1 ← One-vs-all Injection Classifier
M2 ← Three-class Classifier
if M1 predicts ‘Injection’ then

Report as injection
else

if M2 predicts ‘Impersonation/Injection’ then
Report as Impersonation

end if
end if

detect a large number of attacks against Wi-Fi devices. We
also showed that these features are necessary, if not sufficient,
in generalizing to new attack classes.

Further work on this front can explore incorporating other
features either extracted from the ones we selected or chosen
from the ones we didn’t use to improve upon the classification
confidence of machine learning models. In future work, we
will explore the effects of deep-learning-based feature extrac-
tion from our list of selected features as proposed in [11]
and training from a larger, balanced dataset taken from the F
type datasets, and produce a working implementation that can
detect intrusive traffic on wireless devices.
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