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lands are exposed to fertilizers and residue of pesticides
(e.g., organophosphate, carbamate) [1]. Alongside, the
physical and chemical properties of the surface water
vary considerably over time, e.g., sudden storm or flood
can cause a gripping short-term change that may affect
fisheries and pond water. Whereas, in long-term, water
chemical properties vary with seasonal change and with
the water usage pattern [3], [4].

Therefore, comprehensive measurement and knowl-
edge extraction of surface water quality is an inevitable
need to assess and predict the pollution, and derive
factual observations to plan for sustainable use of the
water resources, and associated disaster management [1].
However, investigation of the status quo reveals that the
current process involves laboratory-based manual sample
collection and testing which is tardy, time-consuming,
expensive, ad-hoc, error-prone, and untraceable [1], [2].
Consequently, this process hinders timely assessment,
decision making and long term planning for water quality
assurance. Therefore, this paper empirically investigates
and addresses the following set of research questions:

What are the requirements for the developmentRQ1.
of a technology intensive pragmatic system for
surface water quality profiling and management?

RQ2. How to glen the IoT principles and AI methods
in designing an intelligent system for remote
sensing, profiling and management of the same?
How the system can be materialized by adoptingRQ3.
cutting-edge technologies and methods?

II. RESEARCH APPROACH

Conversant with the research questions, this study
adopts the Constructive Research Approach (CRA) as
the core research method. By definition, CRA offers a
methodology that creates innovative constructions to solve
real world problems and contributes to the field of study
where it is applied [2], [6]. Therefore, this method is
exploited in achieving the following, (a) apprehend the
pragmatic needs towards a knowledge-driven, integrated
smart automation for water quality profiling, (b) design
and develop the same by leveraging the best practised IoT
technologies and design principles, AI-driven deep learn-
ing methods for analysis, decision making and remote
sensing, and (c) document the validation of the system
design and its’ technical soundness.
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  Abstract—Surface  water  is  heavily  exposed  to  contam-
ination  as  this  is  the  ubiquitous  source  for  the  majority 
of  water  needs.  This  situation  is  exaggerated  by  exces-
sive  population,  heavy  industrialization,  rapid  urbanization,
and  ad-hoc  monitoring.  Comprehensive  measurement  and 
knowledge  extraction  of  surface  water  pollution  is  therefore 
pivotal  for  ensuring  safe  and  hygienic  water  use.  However,
current  process  of  surface  water  quality  profiling  involves 
laboratory-based  manual  sample  collection  and  testing,
which  is  tardy,  expensive,  error-prone,  and  untraceable.  This 
paper,  therefore  presents  the  design  and  development  of  an 
IoT  integrated  water  quality  profiling  system  that  possesses 
a  novel  plug-and-play  physical  layer  for  the  sensor  actuation,
and  an  AI  powered  fog  computing  based  cloud  application 
layer  for  remote  water  quality  parameter  measurement 
and  data  acquisition,  remote  data  logging,  monitoring  and 
control,  with  data  analytic  for  critical  reasoning  and  decision 
making.

I.I NTRODUCTION

  Surface  water  is  any  body  of  water  found  on  the
Earth’s  surface,  e.g.,  the  freshwater  in  rivers,  streams,
lakes,  wetlands,  reservoirs,  and  creeks.  This  water  is
unequivocally  the  most  indispensable  natural  element  for
the  survival  of  mankind,  and  all  living  organisms,  e,g.,  an-
imals  and  plants  [1],  [2].  With  rapid  urbanization,  change
in  livelihood,  expansion  of  industrial  and  commercial
complexes,  surface  water  is  becoming  even  more  pivotal
than  ever  before  for  maintaining  the  quality  of  life  [1].
This  water  is  the  ubiquitous  source  for  the  majority  of
water  needs,  including  drinking  and  domestic  purposes,
industrial  and  research  activities,  irrigation,  horticulture,
livestock  farming  and  aquatic  life  including  fish  and
fisheries  [1],  [3].

  However,  with  this  rapid  growth  of  use,  the  surface
water  quality  is  increasingly  declining  due  to  heavy
exposure  to  contamination  and  pollution  [4].  Surface
water  can  be  contaminated  in  a  number  of  ways,  e.g.,
receiving  industrial  and  domestic  wastewater,  sediments,
and  agricultural  runoffs  [1],  [3].  Type  and  severity  of  con-
tamination  vary  based  on  the  establishment  and  its’  water
usage  pattern.  For  instance,  the  water  bodies  close  to
heavy  industrial  zone  are  susceptible  to  heavy  metals  and
hazardous  substances  that  are  discharged  as  by-product.
The  lands  and  water  sources  around  the  agricultural



III. THE CONCEPTUALIZATION OF THE SYSTEM
REQUIREMENTS

The exclusive summary of the system requirements
for the Water Quality Management System (WQMS) are
presented in Figure 1. In this figure a mapping among
the system requirements and their realization within this
system architecture is detailed. The cited requirements
are ubiquitous, and require pervasive connectivity and
computing ability with a consistent interaction between
the physical and digital world using a plethora of sensors,
actuators and communication network. Therefore the sys-
tem is designed by adopting the Internet of Things (abbre-
viated as IoT) principles, design patterns and associated
technologies [2], [3], [4]. IoT facilities an overarching
system design utilizing the layered and client-server archi-
tectural design pattern [2]. The use of layered architecture
ensures modular system design with clear separation of
concept, reducing the dependency among system com-
ponents, minimizing the inter-connectivity with higher
degree of fault tolerance and maintenance [1], [2]. On
the other hand, the client-server architecture powered by
fog-computing assists a flexible network structure design
with a secured narrow-band data communication channel
among remotely connected devices [1], [2], [5].

A Three-Layer simplified reference stack architectural
model is chosen to design the WQMS system, e.g., the
Perception Layer, the Network and Data Process Layer,
and the Application Layer. The abstract representation of
the system architecture with their functional components
and inter-connectivity is detailed in Figure 1.

The Perception layer / Physical Layer consist of
4 (four) inter-connected components with explicit func-
tionalities to adequately serve the four core system re-
quirements (as listed in Figure 1). These components are,
the Data Actuator, GNSS Module, Controller and Storage
unit, and Monitor and Control unit. The data actuator
module is a custom build plug-and-play component that
supports measuring of water quality parameters using dig-
ital sensors. The detailed H/W design specification for this
module is reported in Section IV-A. The GNSS module
records the localization information with the measured
parameters, thus supporting the geo-tagged parameter
measurement need. The monitor and control unit is the
software module that provides real-time visualization of
the actuated data, and allows monitoring and configura-
tion of the sensors and associated components. Finally, the
controller and storage unit implements the program logic
required to offer real-time communication, control and
temporary storage of sensor data which are periodically
logged into the cloud database over the network layer. The
detailed design specification of this layer can be found in
Section IV-A.

The Network and Data Process Layer / Transport
layer is the internet gateway between the perception
and application layers as shown in Figure 1. This layer
is responsible for the transmission and processing of
information received to/from the perception layer and
application layer. Therefore, effectively supporting the
remote data logging, remote sensing and supervision
services. A detailed technical design specification for this
layer is documented in Section IV-B.

The Application Layer performs the raw data log-
ging, data processing and storage with specialized ser-
vices (e.g., intelligent decision support, AI driven au-

tonomous data processing and visualization, exposure of
API to access the data) and functionalities (e.g., user
applications for remote monitoring, supervision, control-
ling and research) defined for different user groups. The
application layer shown in Figure 1 is fully equipped
with the necessary modules to serve these needs. The
implementation detail of this layer is presented in Section
IV-C.

IV. TECHNICAL SPECIFICATION AND
IMPLEMENTATION OF THE WQSM SYSTEM

A. Perception Layer

The perception layer of the WQMS system is consists
of four independent yet interconnected modules, e.g., the
Data Actuator, Analog-to-digital Converter (ADC), the
Micro-Controller & Storage (RaspberryPi), the GNSS &
Cellular module, and the Monitor and control unit. Figure
2 details the H/W specifications for each of the module
along with their inter-connectivity.

The Data Actuator module is one of the core con-
tributions of this work that consists of a modular, plug-
and-play and extensible dynamic sensor hub for real-time
extension of the required sensors. As shown in Figure 2,
the data actuator is consists of a custom build Dynamic
sensor hub and a 16 Channel multiplexer. In this hub, up
to 16 different sensors can be plugged and powered simul-
taneously. The multiplexer facilitates the 16 (C0-C15) in-
put selection by 4 control signals (S0-S3) that are directly
connected to GPIO 5, 6, 13 and 19 of the RaspberryPi
micro-controller. This arrangement supports simultaneous
polling of 16 sensors by the micro-controller. This design
is extensible with additional attachment of multiplexers,
and sensor hubs as per requirement.

The ADC (Analog-to-Digital Converter) Module
converts the analogue sensor data (actuated by the sen-
sors) into its’ digital equivalent and transfer it to the
micro-controller as shown in Figure 2. This is required
as RaspberryPI micro-controller does not possesses any
analogue input pin.

The Micro-Controller & Storage module is the pro-
cessing unit which inter-connects and controls every other
module in the Perception Layer. Several H/W alternatives
are available for the implementation of this module. For
instance, the Node MCU, Arduino, and Raspberry Pi. For
this system development, the RaspberryPi 4 integrated
with the WiFi, Ethernet, SD card Slot, HDMI, Micro-USB
Power Supply is used. Because, the system requirements
(e.g., the clock speed, memory management, diverse
interfacing alternatives and low power consumption) best
matches with this micro-controller. The Raspberry Pi
Control Logic is the system kernel for the Perception
Layer and is burnt into the micro-controllers’ memory.
This kernel defines the control logic for the manage-
ment of every system resource (e.g., the sensors, GNSS
Module, SD card, User Interface, network connectivity
and communication) to ensure proper functionality of this
layer. The kernel also ensures optimized and authenticated
resource access, data validation, storage management,
and communication over the Network Layer or with the
Monitor and control unit. The development language for
the kernel is specific to the micro-controller in use, and
in this case, it is the Python.



Fig. 1. System Architecture (abstract) mapped with the system requirements

The build-in SD Card slot is used for the temporary
storage of the sensor and Geo-location data, along with
other system specific information as required (e.g., system
diagnosis data, error code, and user access detail). This
data storage allows to ensure no data loss, and load bal-
ancing for the network layer in case of system downtime.

The GNSS & Cellular Module is connected to the
RaspberryPi, provides the geo-location (Longitude and
Latitude) for geo-tagging the sensor data in the most
privacy preserving way (refer to Figure 2). This mod-
ule also facilitates the cellular services, e.g., messaging,
calling services of the 2G, 3G and 4G network. For
instance, sending a SOS call to the designated authorities
in case of any alarming condition detected that needs to be
instantly notified. The SIM7600X 4G HAT module is used
for this system development due to its’ reliable location
measurement while deployed in the outdoor condition [7].

Finally, the Monitor & Control unit supports onsite
monitoring and controlling of the system. It should offer
real-time visualisation of all necessary parameters, ana-
lytic and control through wireless or wired communica-
tion with the micor-controller. The HMI display device
with all necessary components (e.g., flash memory, SD
card Slot, GPU, RGB Buffer, RGB Driver, Touch Screen,
UART Interface) is used for this module. The custom-
built S/W module should be developed and deployed in
this device.

Furthermore, the payload need to be calculated to
determine the tentative maximum data load that the
Perception Layer(s) will generate and transmit over the
Network Layer. This load calculation will support the
design of the Network Layer, the selection of the H/W and
the server configurations. To calculate this load following
system configuration is considered, (A) 8 digital sensors
are connected to the actuator and each sensor generates 4
bytes (Int type) of data, (B) 10 handheld manual sensors
each generating 8 bytes of data, (C) Laboratory based data
for 54 parameters that are manually fed using the monitor
unit, (D) the GPS location data, and (E) the Control
signals. With this configuration, the maximum data load
generated by a single Perception Layer is approximately
0.55 Kilobytes as calculated in Table I.

Now, considering the Perception Layer is deployed
in the 64 cites and all the layers are transmitting data
simultaneously in every second. Then the total payload

TABLE I. MAX DATA LOAD GENERATED BY A SINGLE
PERCEPTION LAYER

(A) Sensor Generated Data 8 x 4 (B) = 32 B
(B) Manual input sensor data from sensor module 10 x 8 (B) = 80 B
(C) Laboratory based measurement manual input 54 x 8 (B) = 432 B

(D) GPS Signals = 15 B
(E) Control Signals 3 (modules) X 16 (b) = 8 B

Data for continuous transmission (A+B+C+D+E)= 567 B
= 0.55 KB

(approx.)

for the entire system would be:

0.55 (KB / Perception Layer) x 60 sec x 64 (cities) = 2112 KB / Min
= 2.0625 MB / Min

Therefore, the maximum payload for the WQMS
system (considering 64 perception layers are active simul-
taneously) would generate 2.0625 MB of data per minute,
which need to be handled by the Network Layer.

B. Network and Data Process Layer

This layer establishes a stable and secure network
inter-connectivity between the Perception Layer and the
Application Layer over the internet. However, due to the
drifts in IoT data traffic and unique network requirements
among the IoT systems, the design and development of
this layer differs significantly [8].

For the WQMS system, the volume of data that need
to be exchanged is approximately ∼2.1 MB/Minute as
calculated in Section IV-A. This data should be trans-
mitted by the Network Layer to the central cloud server
hosted in the Application Layer. The vast majority of this
data traffic is in the form of periodic transmissions of
several lines of text (e.g. Json, XML content) contain-
ing sensor measurements, geo-coordinates, toggle switch
positions or simple commands. This implies that very
low bandwidths are necessary at the access layers of
the network. Therefore, the MQTT protocol is adopted
due to its’ capability to handle a maximum of 256MB
of data/Minute (small packet less than 127bytes) which
is significantly higher than the load calculated for this
system to handle.

However, handing of thousands of connected devices
(more than 2000 sensors and associated devices are
estimated for the WQMS system) poses a design chal-
lenge for this layer [2], [9]. This includes, reliable and



Fig. 2. The Hardware Configuration and Design to conceptualize / implement the Perception Layer

efficient communication with high degree of availability,
scalability, alternation and switching with adequate data
security [9]. Considering these concerns, the design and
implementation of the Network Layer for the WQMS
system is presented in Figure 3.

Fig. 3. Conceptualization and Internal Components of Network and
Data Process Layer

A hybrid network topology is used to design this
layer, within which alternate network connectivity along
with communication channel switching is implemented
to ensure availability and scalability. As shown in Figure
3, this layer is equipped with three types of network
connectivity in parallel, namely, the traditional broadband
connection (wired), the GSM/LTE/3G/4G/5G networks
(cellular connectivity), and the WiFi Router (wireless
connectivity).

From the Perception Layer, the integrated Ethernet
ports and the WiFi module of the Raspberry Pi micro-
controller, and the Cellular module with built-in GPS,
GPRS/GSM/LTE communication protocols are used to
establish connection with the Network Layer (as shown
in the lower part of Figure 3).

Towards the Application Layer, a Socket Server with
MQTT Client is implemented in the Network Layer to
establish communication. This server is connected with
two data servers implemented in the Application layer,
namely, the Radis Server and the MongoDB. Having
these two servers in place, facilitates both real-time
synchronous and asynchronous data logging that are re-
ceived from the designated sources. These communication
arrangements are shown in the upper part of Figure 3.
Within the Application Layer, the API server and the AI
Engine get access to the data stored in these two servers
(detail is discussed in Section IV-C).

To establish the communication among these hard-
ware systems, a communication protocol need to be
implemented within the Network Layer. Therefore, the
MQTT server with the MQTT Broker is implemented
to control the data transmission. The task of the MQTT
broker is to receive and filter the data send by the
Publisher and transmit it to the Subscriber. For this
implementation, the Eclipse Mosquitto message broker
is used. In this arrangement, the devices that want to
send data, get registered as the Publishers, and the one
that wants to receive it, get registered as the Subscriber
with the MQTT Broker. For instance, while sending data
from the Perception Layer to the Application Layer, the
micro-controller first get registered as a Publisher with
the MQTT broker, and then transmit the data.

C. Application Layer

Within the WQMS system, the Application Layer
should perform the followings: (a) logging of geo-tagged
raw sensor data that are periodically transmitted by the
Perception Layers deployed over several cites, (b) pre-
processing of the sensor data and storage in the databases,
(c) perform specialized data processing, water quality
assessment and statistical evaluations, (d) management
for the end-user services, (e) implement and execute
AI powered autonomous data processing, assessment,
visualization, and decision making, (f) API integration
for data access, third-party sharing and exchange, and (g)
run user applications for remote monitoring, supervision,
controlling and research. The elaborated design for this
layer is presented in Figure 4.



Fig. 4. Internal Components of Application Layer

In order to develop this layer, a cloud centric archi-
tecture underpinned by the fog computing paradigm is
adopted, so that the data processing can be done in a large
centralized fashion through dynamic resource allocation
[5], [10]. Additionally, it has a very flexible interface
to deploy all the necessary tools for storage, software,
development, visualization, data mining, machine learn-
ing, and AI integration. Commensurate with Figure 4, the
essential modules for this layer are: the fog computing
layer, the databases, data analytic engine, the AI engine,
the API server, the intelligent decision support system,
and the user applications for targeted user groups along
with supporting guides and tutorials.

The use of Fog computing ensures pre-processing of
the sensor data received through the network layer on the
edge of the network, and thus, increasing data processing
efficiency, and reduce the load of the main cloud servers
[11], [12]. It consists of a Socket Server with MQTT
client and the Data Processing engine. The socket client
is implemented in Node.js that establishes the connection
with the Network Layer for sending commands or receiv-
ing the data. The Data Process Engine is used to parse,
join, filter, and curation of the data into well structured
tabular format and store it in the persistent database server
(implemented in MongoDB). Other modules in this layer,
e.g., the AI engine can readily fetch the data from this
server to train the ML models. This arrangement is shown
in Figure 4.

The Database module consists of a Redis database
and a MongoDB database. The Radis database store
data in the RAM and is volatile, therefore, only used
for real-time and fast access of the data. However, for
the persistent storage and long-term data use, the Mon-
goDB database is used. The Data Analytic Engine is
a multipurpose server module that performs three tasks:
(a) perform Descriptive Analytic for summarising and
report preparation from water quality assessment, (b)
perform Predictive Analytic on the water quality data to
predict future progression and patterns, and (c) perform
Prescriptive Analytic to provide consultation and decision
based on specific observations. These analysis results are
often logged into the MongoDB database for use by the
other modules. For instance, the AI engine can extract the
data for training the ML models. Also, the API Engine
can execute appropriate APIs to stage the data for re-
trieval. The staging may include use case evaluation, data
identification, filtering, extraction, aggregation, analysis
and visualization.

The integration of the AI Engine is due to assimilate
intelligence for doing the tasks without human inter-
vention. Knowing the fact that the WQMS system will
produce huge amount of data which requires constant
analysis for classification and real-time decision making,
predictive analysis, trend and pattern identification, and
maintenance of the IoT devices, this integration of AI
is an indisputable engineering design preference. There
are several ML (Machine Learning) algorithms that can



be applied in WQMS system for the model development.
ML algorithms can be leveraged to train AI models with
the data for (a) classification of the water quality profiling
based on geo-locations and other classification param-
eters, (b) predict future behaviour, pattern, events and
anomalies based on the past behavioural trends, (c) deliver
insights otherwise hidden in data for rapid, real-time
and automated responses, and improved decision making.
The AI Engine should also support the implementation
and deployment of both Supervised learning (e.g., linear
and non-linear Regression, classification models) and
Unsupervised learning (e.g., hierarchical clustering, K-
means clustering, Principal Component Analysis) based
ML models. Figure 4 presents a manifestation of a
classification model for Hazard and Risk analysis for the
fisheries based on hazard indexes. For the development
of the ML models, the python based ML frameworks,
libraries and popular IDEs should be made available
in the cloud server. With authorisation, developers and
researchers can use these facilities for model development
and use.

The Intelligent Decision Support System (IDSS)
module is responsible for implementing the business logic
required for taking intelligent and smart decision on
behalf of the end users. As can be seen from Figure 4,
this module can get access to the analytic results (from
the data analytic engine) by invoking appropriate APIs
through the API server. This includes but not limited to
the surface water profiling, hazard analysis, prediction,
and statistical analysis results. These data are then fed into
the appropriate business logic to derive decisive decisions,
observations and reporting.

The API Engine/Server is the middle-ware that
exposes the APIs (Application Protocol Interface) for
unified, standardized and controlled access of data stored
in the MongoDB database. The WQMS system requires
that all access to the data must be made through API
calls, and the API engine should perform this task.

The User Applications are the custom made end-
user S/W products in the form of mobile, desktop or
web-based applications. These applications must acquire
session based user authentication token issued by the
User Authentication & Data Validation module, and then
invoke the registered APIs from the API engine for the
data access. The service domain of these applications are
multi-fold. As listed in Figure 4, applications can serve
real-time, interactive visualisation of the data and analysis
report, or can offer remote monitoring and controlling
of the system (e.g., adjusting the control parameters and
controlling the status of the sensors and actuators), or can
run scripted experiments on the data to meet diverse needs
of the targeted research communities.

Alongside the applications, the user groups can also be
segmented and registered for unified and focused access
to the data, and the system resources. Figure 4 presents
a non-exhaustive list of user groups that includes, re-
searchers, concerned authorities, system operators, among
others. Finally, the User Guide & Tutorial module offers
the online technical and system operation guide to assist
the targeted user groups to effectively use the system.

V. CONCLUSIONS

This study demonstrates an IoT intensive and AI inte-
grated system design and development for remote sensing

and management of the surface water quality. This system
consists of a novel plug-and-play physical layer for the
sensors and GNSS module to acquire geo-referenced
sensor data. The system also has a cloud centric fog
computing application layer that supports remote sensing,
data logging, monitoring and control, with AI driven sta-
tistical and predictive data analysis for critical reasoning
and decision making. This system also exposes APIs to
be used in an authenticated way by the third parties (e.g.,
research organisations, universities, govt. authorities,) to
access the data and services. Overall, this system can
replace the current semi-automated, human intensive and
time consuming process of water quality management
with a technology intensive intelligent system to do the
same. Such a system will facilitate the authorities to
automatically assess and predict the contamination, and
derive factual observations to plan for sustainable use of
the water resources, and associated disaster management.
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