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ABSTRACT Traditionally, pathological analysis and diagnosis are performed by manually eyeballing
glass-slide specimens under a microscope by an expert. The whole slide image (WSI) is the digital specimen
produced from the glass slide. WSI enabled specimens to be observed on a computer screen and led
to computational pathology where computer vision and artificial intelligence are utilized for automated
analysis and diagnosis. With the current computational advancement, the entire WSI can be analyzed
autonomously without human supervision. However, the analysis could fail or lead to wrong diagnosis
if the WSI is affected by tissue artifacts such as tissue fold or air bubbles depending on the severity. Existing
artifact detection methods rely on experts for severity assessment to eliminate artifact-affected regions from
the analysis. This process is time-consuming, exhausting and undermines the goal of automated analysis
or removal of artifacts without evaluating their severity, which could result in the loss of diagnostically
important data. Therefore, it is necessary to detect artifacts and then assess their severity automatically.
In this paper, we propose a system that incorporates severity evaluation with artifact detection utilizing
convolutional neural networks (CNN). The proposed system uses DoubleUNet to segment artifacts and an
ensemble network of six fine-tuned CNN models to determine severity. This method outperformed current
state-of-the-art in accuracy by 9% for artifact segmentation and achieved a strong correlation of 97% with
the pathologist’s evaluation for severity assessment. The robustness of the system was demonstrated using
our proposed heterogeneous dataset and practical usability was ensured by integrating it with an automated
analysis system.

INDEX TERMS Tissue artifact, artifact detection, quality evaluation, whole slide image, digital pathology,
automated image analysis

the diagnosis. During the examination, the pathologist man-
ually selects and analyzes diagnostically relevant regions by
ignoring useless and artifact-affected regions depending on
their severity. Inaccurate tissue preparation results in tissue
artifacts such as tissue fold, air bubbles, pen marks, dust and
tissue tear in the specimen. For example, the tissue fold is
produced during the tissue lifting when the tissue adheres to
the blade and overlays the normal tissue layer. This is mainly
caused by a faulty blade or excessively fatty tissue. The tissue
fold contains multiple layers of tissue, it is thicker than the

I. INTRODUCTION

Conventional pathological image analysis involves examin-
ing a biopsy or surgical specimen, fixed on a glass slide using 
a microscope. This process starts with the biopsy or surgi-
cally removing tissue from the body. Then the tissue speci-
men is processed at different stages to prepare it for analysis 
and diagnosis. The glass slide tissue preparation involves 
fixation, dehydration, clearing, paraffin embedding, section-
ing, staining and cover-slipping. After that, the glass slide is 
analyzed under the microscope by an expert pathologist for
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FIGURE 1. Example of artifact severity.

normal regions and shows different characteristics compared
to the normal tissue. It can negatively affect the analysis and
diagnosis depending on its size, thickness and other proper-
ties [1]. The air bubble artifact is produced when the air is
trapped under the coverslip due to the thin mounting medium
or the tissue section due to the poor flotation bath. Air bubble
also changes the histological features of the specimen. Tissue
folds and air bubbles are the most common tissue artifacts
of tissue-based pathology [2]. Figure 1 shows the example
tissue fold and air bubble artifacts with different severity. Ink
or pen is used to mark specific regions on a glass slide which
sometimes invades the tissue structure making it difficult to
assess the area. Dust can also infiltrate the tissue and block
the histological features. Tissue tear is the splitting of tissue
that is caused by the penetration of faulty forceps [3]. It often
breaks the structure of the tissue. Pigment artifacts are caused
by the long exposure of tissue to formalin which reacts with
the hemoglobin and produces formaldehyde pigments on
the tissue. Similarly, color pigment artifacts can be noticed
on the CISH specimen caused by the long hybridization
time. All these artifacts change original tissue morphology
and add irrelevant features which make the analysis chal-
lenging [4]. As a result, these artifacts and artifact-affected
regions are identified and ignored from the analysis by the
pathologists. However, such manual evaluation of artifacts is
time-consuming, laborious and subjective to inter- and intra-
operator variability. Therefore, the need for an automatic
artifact detection method is undeniable, particularly for the
digitalization of pathology [5].

In digital pathology, the WSI scanner converts the glass
slide specimen into a high-resolution digital image which
allows to utilize computer vision and artificial intelligence
for analysis and diagnosis. The WSI scanner was approved
by FDA in 2017 and since then the WSI-based pathology
has been adopted by many laboratories and hospitals for
education [6], [7], research [8]–[10] and clinical applications
[11]. As shown in Figure 2, modern pathology assembles
a digital pathological workflow that is driven by automated
sectioning and staining machines for preparing the glass slide

before being converted to a WSI. After that, the WSI is
processed using automated image analysis methods and the
results of the automatic interpretation are then stored in a
central database that is integrated with the laboratory infor-
mation system. There are several automated image analysis
tools that can extract information from the WSI and associate
them in ways that a human microscopic examination cannot.
The automated analysis of WSI has certainly transcended
the ability of pathological analysis to precisely identify the
patient’s condition from counting the number of cancer cells,
gauging the size of the tumor and predicting the response to
treatments.

However, the automated analysis of WSI relies on WSI
quality which may be affected by a number of issues. If the
WSI quality is subpar, the automated method could produce
an inaccurate diagnosis. Scanning artifacts and tissue arti-
facts are the two main types of artifacts that affect the WSI.
The WSI scanner related problems lead to scanning artifacts
such as focus blur, noise, low brightness and low contrast.
Rescanning the glass slide recovers the WSI from artifacts
that were generated due to scanning or hardware problems.
In this work, we mainly focused on the tissue artifacts and
excluded the scanning or hardware related artifacts as they
can be fixed by rescanning the specimen under optimal
settings. On the other hand, even if we rescan the glass slide,
tissue artifacts like tissue folds or air bubbles that degrade
the quality of the glass slide itself cannot be resolved. If the
influence of the tissue artifact on the WSI is crucial for the
analysis and diagnosis, the artifacts along with the artifact-
affected tissue regions must be identified and eliminated from
the analysis.

Several methods were proposed previously to identify
tissue artifacts, mainly tissue fold or air bubble, utilizing
computer vision or machine learning techniques [12]–[22].
However, these techniques don’t consider the influence of
artifacts on the analysis and diagnosis to eliminate them. As
a result, a significant percentage of the specimen may be
excluded from the analysis, which could have been beneficial
diagnostically. This is particularly important in molecular
analysis, where the presence of biomarkers such as gene and
protein are quantified for diagnosis and treatment planning.
Existing methods detect tissue artifacts which are then used
by the pathologists for the decision to eliminate or include
them along with their neighboring regions in the analysis.
These methods eliminate a region from analysis if it contains
artifacts or part of artifact regardless of their impact on the
region. Therefore, it is necessary to evaluate the severity of
the tissue artifacts in order to remove them from analysis
and diagnosis. Usually in digital pathology, the artifacts are
detected automatically and then the decision to eliminate
them is taken manually by checking the artifact detection
results which makes the system semi-automated.

In this paper, we propose an AI-assisted artifact detection
method for a fully automated image analysis system that
does not rely on an operator for the decision to eliminate
an artifact-affected region from the analysis. The proposed

2



dataset and clinical validation of the system for the practical
use.

The rest of the paper is organized as follows, with Section
2 providing a review of the existing literature. The construc-
tion of the dataset is described in Section 3 along with an
explanation of how the proposed method functions and the
experimental protocol. In Section 4, the experiment results
are evaluated and in Section 5, the discussion of the study is
presented. Section 6 concludes this study and suggests future
work.

II. RELATED WORKS
The tissue artifacts detection methods proposed for assisting
pathological image analysis can be broadly divided into two
categories based on their approach: 1) colorimetric feature-
based method and 2) machine learning-based method.

The color distribution based methods [14], [15], [19], [20]
utilizes the color properties mainly the saturation-intensity
difference of the tissue artifacts to distinguish them from
the normal tissue. For example, the tissue folds are thicker
compared to the normal tissue areas and absorb more dye.
As a result, the tissue fold has a darker appearance than the
normal tissue sections, with a higher saturation and lower
brightness. This inspired the development of a color-shifting
technique to increase the color metric distinction between
folded and unfolded regions to detect the folder regions. One
of the earliest methods for detecting tissue fold was proposed
by Palokangas et al. [19] that utilized the saturation-intensity
difference and relied on k-means clustering to identify the
folded regions. The choice of cluster number is critical since

FIGURE 2. Digital pathology workflow for automated image analysis and diagnosis.

system first segments tissue artifacts and then evaluates their 
severity based on how they affect the analysis, which is 
then incorporated into the decision to exclude an artifact-
affected region from the analysis and diagnosis. For artifact 
segmentation, multiple U-net-based networks were devel-
oped by optimizing the parameters of two well-known U-
Net models ResUnet++ and DoubleU-Net. After that, the best 
network was selected to segment the artifact. U-Net is a CNN 
that was developed for biomedical image segmentation. Its 
architecture is based on a fully convolutional network and 
can achieve precise segmentation when trained with a small 
number of images. U-net is also computationally fast and
a 512x512 image can be segmented in less than a second. 
To find t he b est n etwork f or d etermining a rtifact severity 
ten popular CNN-based classification models ( i.e., VGG16, 
VGG19, Xception, ResNet50, Incep-tionV2, InceptionV3, 
MobileNet, MobileNetV2, DenseNet121 and NasNetLarge) 
were fine-tuned b y o ptimizing s elective p arameters. Then, 
six suitable networks were combined to form an ensemble 
network to assess the severity. The proposed system was vali-
dated for slides prepared by different laboratories, scanned by 
multiple scanners and containing different organs and stains. 
Plus, it can detect the artifact and provide the decision of 
elimination in less than 10 seconds.

The major contributions of this paper are listed as follows: 1) 
the development of a fully automated artifact detection 
method that incorporates severity assessment with the artifact 
segmentation, 2) the development of a heterogeneous dataset to 
test the robustness of the artifact detection methods and 3) 
evaluation of the proposed method using the heterogeneous
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a pathological specimen may have various components in a
slide, such as nuclei, cytoplasm, background, hazy region,
tissue fold or other irregularities. Eventually, this method
ended in detecting only the prominent folds and resulted
in high false positives in the absence of folds. Practical
usability is a major concern for this method as it requires
20X image, takes a long time to process and has only been
tested on H&E slides. Bautista et al. [15] proposed another
method for detecting tissue fold utilizing its color metric
features. This method shifted the saturation by adding an
adaptive factor to the RGB values of the pixel depending
on saturation and luminance. This shifting enhances a tissue
fold pixel more than a normal pixel. After that, a fixed
threshold was applied to the change to identify a tissue fold
pixel. However, the fixed threshold does not work well for
all slides as the color of the WSI varies depending on the
scanner, staining protocol of the laboratory and biological
variation in slides. For example, a tissue fold in a lightly
stained slide that can be similar to a normal region in a highly
stained slide. Therefore, this method fails to achieve prac-
tical usability. This signifies that a tissue artifact detection
method should be demonstrated for multiple scanners and
multiple slides prepared by different laboratories to ensure
its practical clinical use for digital pathology. Kothari et al.
[14] also proposed a different technique for detecting tissue
folds based on the saturation-intensity difference, in which
folded regions were identified using two adaptive thresholds
rather than a single fixed threshold. Based on a connection
map that depicts the saturation-intensity differentiation value
for different pathological components of the specimen, the
thresholds were determined. However, a single colorimetric
feature-based approach might not be able to withstand a
reproducible image analysis system. Later, the same group
presented a different approach [20], combining gray-level
texture data with RGB, HSI, CIELUV, and CIELAB features
to eliminate tissue folds and pen markings. This method was
more robust than the earlier ones when applied to various
slides. These methods utilized a low-resolution thumbnail
image for quick detection, which is important for practical
implementation.

Artifact detection based on only the colorimetric fea-
tures fails when the staining protocols and scanning profiles
change. To overcome this issue, Hossain et al. [12] pro-
posed a machine learning based method that utilizes more
intuitive physical properties of the artifacts. They trained
support vector machines (SVM) to detect tissue folds and air
bubbles from the 1X magnification WSI using the data-driven
features obtained from heterogeneous data sets. Babaie et al.
[17] proposed a hybrid approach in which they combined
the feature extraction capability of CNN with the SVM
classifier which needs a small number of data points to
classify images. They used DenseNet to extract features and
then trained a SVM classifier using the features to detect
tissue fold. It achieved an accuracy of 96%. However, the
generalized performance was 81% which is significantly low.
More importantly, this method relies on 20X magnification

images which is highly time-consuming. Foucart et al. [21]
proposed a weakly supervised machine learning method to
detect tissue folds from 1.25X images. This method can work
when trained with an imprecisely and inaccurately annotated
dataset. This is crucial for pathological image analysis as the
data annotation is time-consuming and expensive. When used
with a GPU-enabled computer, it took about two minutes
to segment the tissue fold from a WSI. An open-source
tool was developed utilizing the brightness, contrast and
other image features for spotting artifacts and evaluating the
quality of WSI for automated analysis by Janowczyk et al.
[22]. However, this method relies on a 40X image and takes a
high time to detect artifacts. For instance, in a demonstration
to evaluate 450 image blocks, this method took 135 minutes
in a computer with four hyperthreaded core processors. Thus,
it is not suitable for routine clinical use.

None of the above mentioned methods except the
Janowczyk et al. [22] considered the severity of the artifact
for eliminating them from the analysis. However, this is
crucial for developing a fully automatic image analysis and
diagnosis system. Moreover, the detection should be robust
and fast to ensure its practical use. In this paper, we proposed
an efficient and practically reliable method that not only
segments the artifacts but also assesses their severity to
incorporate it for the decision to eliminate or include them
in the analysis.

III. MATERIALS AND METHOD
A. DATASET

For this study, we developed a heterogeneous dataset with
specimens from multiple labs that were scanned using dif-
ferent scanners and contained a variety of organs and stains.
The specimens used for the test were entirely different from
those used for training and validating the networks, as shown
in Figure 3. This was done to ensure the robustness of the
proposed method.

For the artifact segmentation experiment 960 image blocks
were extracted from 26 WSIs at 1x which included 480
tissue fold images and 480 air bubble images. Among the
26 slides, 20 were scanned using 3DHISTECH Pannoramic
Desk Scanner and 6 were scanned using HAMAMATSU
NanoZoomer scanner. The 26 slides were produced from
human biopsy and included major tissue organs such as brain,
liver, lung, stomach, intestine, spleen, and heart. The staining
included H&E, IHC-p40, IHC-B-catenin, IHC-CD34, IHC-
CD3, Masson’s trichrome, PAS (Periodic acid Schiff), Azan
trichrome and CISH (chromogenic in situ hybridization).
The biopsy glass slides were produced in two different lab-
oratories. These artifact-affected images were annotated by
three sub-specialized breast pathologists to generate mask
for artifact segmentation experiments. These images contain
artifacts of different severity which were identified manually
by the experts as high, mid and low for training and validating
the severity assessment classifier. The 960 images included
320 images of each severity.

4



FIGURE 3. Heterogeneous data distribution.

A set of another 420 artifact-affected images were ex-
tracted from 10 WSIs at 1x which were scanned by Aperio
scanner. These images were produced from a completely dif-
ferent slides, prepared and scanned by a different laboratory
at Sunnybrook Health Sciences Centre, Toronto, Ontario,
Canada [23]. The 420 images contained 210 tissue fold and
210 air bubble images which were used for testing the artifact
segmentation networks. Then, these images were assessed
independently by three experts to determine their severity.
It includes 140 high, 140 mid and 140 low severity images
which were used to test the severity assessment classifier.
Table 1 shows the distribution of data for training, validat-
ing and testing the segmentation and severity assessment
networks. As the dataset contains human specimens, we
obtained ethical approval for this study from the Institutional
Review Board of Independent University, Bangladesh (ap-
proval code: 2022-SETS-002).

TABLE 1. Training, validation and test data distribution for segmentation and
severity assessment experiment.

Segmentation Severity

Tissue fold Air bubble High Mid Low

Training 384 384 256 256 256
Validation 96 96 64 64 64

Test 210 210 140 140 140

a multi-resolution pyramid architecture. The early layers of
the pyramid provide low-resolution images, while deeper
layers provide higher resolution. Processing the WSI image
is a time-consuming task because of its massive size and
diversity. High-resolution WSI such as 20X-60X is used for
tasks that require finer details, such as identifying tissue
structures, recognizing bio-marker signals, and detecting fo-
cus error. High-resolution image blocks take a long time to
process. On the other hand, low-resolution WSI, such as 1X-
5X contains coarse information and can be processed faster.
The proposed method utilized the 1X magnification WSI for
rapid evaluation yet achieved adequate precision for reliable
artifact detection. Figure 4 shows the architecture of the
proposed system that has mainly three phases: 1) Scanning
the WSI and diving it into blocks, 2) pre-processing the
blocks and 3) artifacts segmentation, severity assessment of
artifact segmented blocks and visualization for the user.

Algorithm 1 explains the proposed system which starts
with dividing the WSI into non-overlapped and fixed-
size image blocks of 200 × 200 pixels. Then for each
block,WhiteScore is estimated. An image block containing
mostly white pixels was excluded for artifact checking. A
pixel is considered white if its intensity is higher than 200.
The WhiteScore is the percentage of white pixels in a
block. We excluded a block if it contains more than 75%
white pixels. Otherwise, it is converted to the sRGB color
space. Then, two different DoubleU-Net models are applied
on the block: one for tissue fold segmentation and the other
for air bubble segmentation. The U-Net models were trained
for segmenting the particular artifacts from the block. If the
block contains any of the artifacts it is then assessed using
the severity assessment classifier to estimate the influence of

B. ARCHITECTURE OF THE PROPOSED SYSTEM
The proposed method utilizes low magnification W SI such 
as 1X to segment artifacts and estimate their severity for the 
decision to eliminate them from the analysis. The WSI is 
very large such as 100,000 × 100,000 pixels and stored using
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FIGURE 4. Architecture of the proposed system.

the artifact on the block. The severity classifier classifies the
influence as High, Mid or Low. Finally, this information is
utilized for visualizing the artifacts along with their severity
in the WSI viewer for user interpretation.

In this study, the existing CNN models and technology
were utilized to find the best networks for the proposed work.
We constructed a unique heterogeneous dataset for training,
validation and testing the networks for this purpose. Then a
set of 480 segmentation networks and 720 severity classifi-
cation networks were created by modifying selected hyper-
parameters of existing popular networks that had already
been established for related works and fine-tuned using the
heterogeneous dataset. The best networks were then found
from the candidates using an exhaustive grid search. The
details of tissue artifact segmentation and severity assessment
method are explained in the following sections.

1) Tissue Artifact Segmentation

We have detected tissue fold and air bubble artifacts which
are the most common artifacts found in histopathology slides.
However, we plan to include other artifacts such as dust and
pen marks in future. We have trained two separate DoubleU-
Net [24] model for detecting tissue fold and air bubble from
256X256 image blocks extracted from 1X WSI. Tradition-
ally, U-net [25] uses an encoder-decoder-based approach to
accomplish semantic segmentation, where each pixel of the
image corresponds to a class. DoubleU-Net [24] architecture

uses two U-nets in a sequence with two encoders and two
decoders to capture more semantic information efficiently, an
advancement over the conventional U-Net. It also uses Atrous
Spatial Pyramid Pooling (ASPP) to extract high-resolution
feature maps that lead to superior performance. The first U-
Net uses a pre-trained VGG-19 [26] as the encoder followed
by a decoder sub-network. The VGG-19 network is trained
on the ImageNet dataset. In the DoubleU-Net architecture, an
input image is first fed to the VGG-19 encoder based U-Net
which produces the predicted masks for the input. Then, the
original input and its masks are multiplied to feed the second
U-net network which produces another mask. After that,
the masks of both U-Nets are concatenated to get the final
predicted mask which serves as the output of the DoubleU-
Net network.

We annotated the input images to create binary masks
for training the network. The image dataset contains 480
tissue fold and 480 air bubble images which were annotated
manually for training the U-net network. The tissue fold
segmentation networks were trained and validated using 80%
and 20% of the 480 images, accordingly. The air bubble
segmentation networks were trained, validated and tested
similarly using the air bubble images. Data was augmented
by applying vertical flip, horizontal flip and rotating at 15
degrees for the training. We have experimented with Re-
sUnet++ and DoubleU-Net using different optimizers, loss
functions and learning rates for both tissue fold and air
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bubble segmentation. Both the tissue fold and air bubble
segmentation network achieved the best performance for
DoubleU-Net when trained by an RMSprop optimizer with
Dice Coefficient loss function and Sigmoid output function.
The epoch was 100 and the learning rate was 0.0001.

Algorithm 1 Artifact segmentation and severity classifica-
tion

1: Input: IWSI ,Wth, SegNetTF , SegNetAB ,M, P,G, f
IWSI : the 1X WSI
Wth: threshold to eliminate white blocks
SegNetTF : Trained DoubleU-net for tissue fold
SegNetAB : Trained DoubleU-net for air bubble
G: base models with parameters

2: Initialisation:
G = {g1, g2, g3, ..., gn},

3: Iblock = Divide IWSI into 200×200 pixels blocks
4: while IBlock! = NIL do
5: WhiteScoreI = Percent of white pixels in IBlock

6: if WhiteScoreI ≤Wth then
7: if CLinear ≤ 0.0031 then
8: IsRGB = 12.92× CLinear

9: else
10: IsRGB = 1.0552× C

1
2.4

Linear

11: end if
12: Apply SegNetTF on IsRGB

13: ITF = Tissue fold affected blocks
14: Apply SegNetAB on IsRGB

15: IAB = Air bubble affected blocks
16: if ITF ! = NIL or IAB ! = NIL then
17: while i ≤ n do
18: Gi ← Load base models
19: fi = Gi(IROI)
20: i = i+ 1
21: end while
22: Load meta model with the n + 1 parameters

{α, β, γ, η...λ}
23: y = α+ βf1 + γf2 + δf3 + ηf4 + ...+ λfn
24: MAX=maximum(y)
25: if y(1)==MAX then
26: ψ ← High
27: else if y(2)==MAX then
28: ψ ←Mid
29: else
30: ψ ← Low
31: end if
32: end if
33: end if
34: end while
35: return ψ

the severity of the artifacts as High, Medium, and Low,
resulting in multi-class classification. As illustrated in Figure
5, we used ensemble learning for severity classification.
Ensemble architecture incorporates the strengths of multiple
models while mitigating their weaknesses, resulting in higher
accuracy than individual models [27], [28].

In an ensemble architecture, multiple models are inte-
grated in layers. In the first layer, multiple models are trained
individually using the input images to predict the output
classes. The models of the first layer are called base models
or classifiers. The outputs of the base layers serve as the input
to the model of the second layer, known as the meta-model.
The output class is predicted by the meta-model utilizing the
outputs of the base models as features. The proposed system
employs a single ensembled architecture to predict the sever-
ity of artifacts for both tissue folds and air bubbles. At first,
we trained ten candidate CNN classifiers individually which
are VGG16, VGG19, Xception, ResNet50, InceptionV2,
InceptionV3, MobileNet, MobileNetV2, DenseNet121 and
NasNetLarge to predict the severity of artifacts regardless its
type. The candidates were pre-trained using the ImageNet
dataset. To determine the best network architectures, we
investigated the performance of the candidate models for
various optimizers, loss functions and other parameters. After
that, the top six networks were selected as base models to
form the ensemble architecture. The best six networks were
then selected as the base models of the ensemble architecture.
In the ensemble architecture, the outputs of the six base
classifiers were fed to a different meta-model. We have
experimented with ten different candidates which include Lo-
gistic Regression (LR), K-nearest neighbor (KNN), Decision
Tree (DT), Random Forest (RF), AdaBoost Classifier (Ada),
Xtreme Gradient Boosting Classifier (XGB), Gradient (GB)
Boosting Classifier, Gradient Boosting (GB) Regression and
Gaussian Naive Bayes (GNB) for meta models. LR, KNN
and SVM achieved the best performance in the experiment,
however, we recommend using LR as it achieved the highest
accuracy for all combinations of base networks.

We used a dataset of 960 images of tissue fold and air
bubble artifacts which included 320 images for each category
High, Mid and Low for training and validating the ensemble
model. A separate dataset of 420 images which included
140 images for each category was used to test the ensemble
model. This was done to ensure that the proposed method is
tested using a completely unseen dataset.

IV. RESULTS
We have evaluated the artifact segmentation results of seg-
mentation networks in terms of IoU, accuracy, AUC and
precision. The IoU is the number of pixels common between
the annotation mask in the ground truth and the segmentation
mask by the proposed method divided by the total number of
pixels covered by both for an image block, as given in Eq. (1).
The sum of the IoU scores for various images divided by the
total number of images is then used to determine the average
IoU for a network. An artifact-affected image is termed true

2) Artifact Severity Assessment

The artifact segmentation is followed by a severity assess-
ment to determine if the artifact and neighboring affected 
regions should be excluded from the diagnosis. We classified
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FIGURE 5. Proposed ensemble approach for artifact severity assessment.

positive if the IoU score exceeds a predetermined threshold;
otherwise, it is considered a false negative. An artifact-free
image is a true negative if the IoU score is less than the
threshold; otherwise, it is considered a false positive. Then,
using Eq. (2) and Eq. (3), the accuracy and precision value
of the network are determined. The accuracy values obtained
by changing the predetermined threshold value are used to
estimate AUC.

IoU =
Annotation ∩ Segmentation
Annotation ∪ Segmentation

(1)

Accuracy =
True Negatives+ True Positives

All Samples
(2)

Precision =
True Positives

True Positives+ False Positives
(3)

In the severity assessment experiment, the accuracy on test
data was used to select the base models among the candi-
dates. Further, the confusion matrices as well as the micro-
and macro-averaged AUC of ROC curves were shown. The
key difference between macro and micro averaging is that
the former assigns equal weight to each class whereas the
latter does so for each sample. If the number of samples for
each class is the same both macro and micro will provide the
same score. The severity assessment ensembled model was
then evaluated using a confusion matrix, which is a widely
recommended method for evaluating multi-class classifica-
tion problems. But we relied on its statistical correlation with
experts’ manual judgement to guarantee the validity. Both
the Pearson and Spearman rank correlations were used to
estimate the correlation.

A. EVALUATION OF ARTIFACT SEGMENTATION
We have trained two different networks to segment tissue
folds and air bubbles. To find the best networks, we have ex-
perimented with ResUnet++ and DoubleU-Net models. The

models were trained for the various hyperparameters listed in
Table 2 which produced 480 candidate networks. Based on
their accuracy, average IoU, AUC and precision on the test
data, the best networks were selected for segmenting each
type of artifact. The most effective segmentation of tissue
folds and air bubbles was accomplished using DoubleU-Net
networks with RMSprops optimizer, Dice Coefficient loss
function, and learning rate 0.001. As the candidates were
being trained and validated, we calculated their accuracy, pre-
cision, loss and IoU curve as well. Figure 6 shows the training
and validation IoU for the best networks based on ResUnet++
and DoubleU-Net models to segment both tissue folds and air
bubbles. The performance evaluation of the best ResUnet++
and DoubleU-Net networks for segmenting tissue folds and
air bubbles on the test dataset is illustrated in Figure 7. From
Figure 6 and 7, it can be seen that the DoubleU-Net based
networks outperformed the ResUnet++ on both occasions.
Therefore, the DoubleU-Net based networks, SegNetTF and
SegNetAB were selected to segment the tissue fold and air
bubble artifacts, respectively. The SegNetTF achieved an
average test IoU of 98.02% for 95% threshold, test accuracy
of 98.33% for 90% IoU threshold and test accuracy of 100%
for 85% IoU threshold. Similarly, the SegNetAB network
had an average test IoU of 99.11%, test accuracy of 100%
for 90% IoU threshold and test accuracy of 100% for 85%
IoU threshold. Figure 8 shows the result of tissue fold and air
bubble segmentation using selected segmentation networks.
The proposed method achieved 99.33% and 99.11% accuracy
using a 90% IoU threshold for segmenting tissue fold and
air bubble artifacts from 1X WSI, respectively. We have also
compared the proposed method’s artifact segmentation result
with the previous methods, as shown in Table 3. The results
show that the proposed method achieved the highest accuracy
among the artifact detection methods when implemented on
the same heterogeneous dataset. Furthermore, this method
makes use of 1X magnification images, which is crucial for
practical use. Using high magnification images, such as 10X
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TABLE 2. Optimization of hyperparameters for ResUnet++ and DoubleU-Net
to find the best segmentation networks for tissue fold and air bubble.

Criteria Search Space
Pre-trained Models [ResUnet++, DoubbleU-Net ]
Epoch [25, 50, 100, 150, 200]
Batch size [8, 16, 32]
Leanring rate [0.0001, 0.001, 0.01, 0.03]
Optimizer [Adam, Adamax, RMSprop, SGD]
Loss function [Dice Coefficient Loss]

The proposed method achieved a classification accuracy of
99.99% for evaluating the severity of artifact-affected re-
gions.

We have also evaluated the performance of the proposed
method subjectively in which the severity assessment results
were compared with the pathologist’s manual scores. The
Spearman’s rank correlation was 0.99 and the Pearson cor-
relation was 0.97 (p < 0.001) for 418 degrees of freedom
which indicate a high concordance between the pathologist’s
manual observation and the proposed method. Figure 12
shows the comparison between the proposed method and the
pathologist’s manual evaluation of severity assessment. For
this evaluation, we have used another set of test images which
contained 420 images unseen to the network. Pathologists
scored 140 image blocks as high severity, 140 as medium
severity, and 140 as low severity out of 420 images. The pro-
posed method classified 129 blocks as high, 153 as mid, and
139 as low severity. Thus, the proposed method incorrectly
classified 13 blocks as mid severity whereas pathologists
rated them as high severity. This is particularly important in
molecular analysis, where the presence of biomarkers such as
gene and protein are quantified for diagnosis and treatment
planning.

C. EVALUATION FOR PRACTICAL USE
The assessment of the proposed method for routine clini-
cal application is crucial to ensure its practical use in the
hospital and pathology laboratories. In medical research, it
is necessary to incorporate the feedback of practitioners to
validate a system for clinical use. In this work, we did the
same with three expert pathologists to identify the key system
considerations for the clinical deployment and then assess the
fitness of the proposed system against them. The identified
key system considerations are the generalized performance
with heterogeneous datasets, time of execution, and integra-
tion with the application for pragmatic use.

The state-of-the-art methods were trained and tested using
specimens prepared by the same laboratory. As a result,
these methods failed when applied to the specimens provided
by different labs or contains different organs or stains. To
ensure the generalized performance of the proposed method,
we therefore, prepared a heterogeneous dataset that contains
specimens of different stains and organs. Alongside, these
specimens were prepared by different laboratories and were
scanned by different scanners. When tested with this dataset,
the proposed method achieved an accuracy of over 99%,
which conclusively confirms the generalized usability of the
method.

The time of execution is another key consideration as
the processing time increases exponentially with larger WSI
images (e.g., WSI image at 10X∼40X magnification). There-
fore, the proposed method utilized 1X magnification image
for artifact detection and severity assessment. This selection
significantly reduced the execution time. For example, when
applied on 5 WSIs using a MacBook with an Apple M1 chip
and a 8-core CPU, the proposed method took time in between

or higher, prolongs the artifact segmentation process, making 
it unsuitable for practical use.

B. EVALUATION OF SEVERITY ASSESSMENT
We trained the ensemble model to assess the severity of 
artifact-affected regions as high-severity, mid-severity and 
low-severity regardless of the type of tissue artifacts. In 
order to find the best networks for the base model, we have 
investigated the performance of ten CNN models for different 
batch sizes, learning rates, optimizers and loss functions, 
as shown in Table 4. This generated a search space of 720 
candidate networks to train and select the best networks 
as base models. For training, we have adopted the transfer 
learning approach and utilized the pre-trained models using 
the ImageNet dataset. In transfer learning, we freeze the con-
volution base of the models and trained only the dense layers 
using the training and validation dataset. 80% of the images 
were used for training and 20% were used for validating the 
models.

Based on the test accuracy of the candidate networks, we 
selected 6 networks as the base models, as shown in Table 
5. Figure 9 shows the training and validation accuracy and 
loss curves of the selected base networks. The confusion 
matrices and the receiver operating characteristics curves for 
the selected based models are shown in Figure 10 and Figure 
11, respectively. The results of these experiments show that 
the CNN-based models achieve good accuracy in assessing 
the severity of artifacts in the validation and test dataset. 
However, in order to ensure the generalized performance of 
the proposed system, we have combined the multiple base 
models which were trained separately to form an ensemble 
architecture. Multiple research showed that ensemble archi-
tecture achieves higher generalization capabilities compared 
to an individual model for classification task [29].

Then, the base networks are stacked where each network 
predicted the severity of a given input image, which were 
then utilized as a feature to train a meta-classifier to predict 
the final o utcome. We e mployed d ifferent c ombinations of 
selected base networks with different meta-classifiers and 
compared their results to determine the best ensemble archi-
tecture. In the network comparison (as shown in Table 6), the 
logistic regression outperformed the other meta-classifiers 
when applied with the network combinations. As a result, 
we have chosen and suggested an ensemble architecture for 
the proposed system by stacking the top six networks as 
base models and the logistic regression as the meta-classifier.
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FIGURE 6. Training and validation IoU of best networks of ResUnet++ and DoubleU-Net for tissue fold (TF) and air bubble (AB) segmentation.

TABLE 3. Comparison of artifact segmentation methods.

Method Artifacts Magnification Average accuracy on
homogeneous dataset

Average accuracy on
heterogonous dataset

Palokangas et al. [19] Tissue fold 20X 85.46% -
Bautista et al. [15] Tissue fold 1X 77.91% -
Kothari et al. [14] Tissue fold 1X 77% -
Foucart et al. [21] Tissue fold 1.25X 91% -
Babaie et al. [17] Tissue fold 20X 81% -
Janowczyk et al. [22] Tissue fold, ink mark &

air bubble
40X 95% -

Hossain et al. [12] Tissue fold & air bubble 1X 97.7% 90%
Proposed Tissue fold & air bubble 1X 99% 99%
-, Not available.

TABLE 4. Optimization of hyperparameters for 10 different models to select
base models for severity classification.

Criteria Search Space
Pre-trained
Models

[VGG16, VGG19, Xception, ResNet50, Incep-
tionV2, InceptionV3, MobileNet, MobileNetV2,
DenseNet121 and NasNetLarge ]

Epoch [25, 50, 100]
Batch size [8, 16, 32]
Leanring rate [0.0001, 0.001, 0.01, 0.03]
Optimizer [Adam, Adamax, RMSprop]
Loss function [Categorical cross entropy, Kullback Leibler Diver-

gence]

5 and 13 seconds. This time is slightly higher than the SVM
based method proposed by Hossain et al. [12]. However, our
method incorporated the severity assessment with the artifact
segmentation that is missing in the earlier work. None-the-
less, the execution time is still efficient enough for practical
use considering the fact that the contemporary WSI scanners
take approximately 1 to 2 minutes only to scan an entire WSI.

The last consideration is to integrate the method with
automated image analysis tools for pragmatic use. To date,
most of the image analysis techniques are created as stan-
dalone applications or as WSI viewer plug-ins. In this work,
we developed an application using python and integrated it
with an image analysis application which is automatic HER2
quantification. This system uses H&E specimens to identify
and select representative invasive breast cancer regions which
are then copied to the CISH WSI using image registration
for further quantification. For accurate HER2 quantification,
which the artifacts may impair, the selection of invasive
regions is essential. In addition, eliminating a low severity
artifact affected block may have an effect on the region se-
lection process for HER2 measurement. In order to segment
the artifacts, and show their severity using different colors
along with the severity score, we created an application for
the proposed method using Python’s Tkinter library. The
feedback from the pathologists was considered in making the
application simple to use. A 3 scale Likert with options good,
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TABLE 5. Selected neural networks as the base model for ensemble learning.

Network Pre-trained Model Optimizer Loss Function Validation Loss Test Accuracy
Network 1 XCEPTION RMSprop CCE 0.0103 0.9976
Network 2 MobileNet RMSprop KLD 0.0092 0.9976
Network 3 MobileNetV2 RMSprop CCE 0.0024 0.9970
Network 4 DenseNet121 RMSprop CCE 0.0034 0.9970
Network 5 MobileNetV2 RMSprop KLD 0.0206 0.9966
Network 6 VGG19 RMSprop CCE 0.0216 0.9916
CCE, Categorical Cross Entropy; KLD, Kullback Leibler Divergence.

TABLE 6. Test accuracy comparison for different meta models.

Meta Models LR KNN SVM DT RF Ada XGB GBR GBC GNB
Top 2 Networks 99.99 99.99 99.82 99.64 99.64 99.99 99.99 99.99 99.99 99.82
Top 3 Networks 99.99 99.82 99.99 99.64 99.64 99.99 99.99 99.99 99.99 99.82
Top 4 Networks 99.99 99.99 99.99 99.81 99.82 99.99 99.82 99.82 99.99 99.99
Top 5 Networks 99.99 99.99 99.99 99.81 99.82 99.99 99.82 99.99 99.82 99.99
Top 6 Networks 99.99 99.99 99.99 99.90 99.99 99.96 99.99 99.82 99.82 99.99
LR, Logistic Regression; KNN, K-Nearest Neighbors; SVM, Support Vector Machine; DT, Decision Tree; RF, Random Forest;
Ada, AdaBoost Classifier; XGB, Extreme Gradient Boosting Classifier; GBR, Gradient Boosting Regression; GBC, Gradient
Boosting Classifier; GNB, Gaussian Naive Bayes Classifier.

FIGURE 7. Comparison of best networks of ResUNet++ and DoubleU-Net for
segmenting tissue folds and air bubbles from test dataset.

average and poor was included in the application to rate its’
performance by the pathologists.

V. DISCUSSION

FIGURE 8. Artifact segmentation result by proposed networks.

was also found more accurate in segmenting artifacts than
the earlier methods when compared on the same dataset.
The robustness and practical usability of the method was
confirmed through objective and subjective evaluations. In
general, Medical imaging systems are evaluated based on
objective metrics only, and therefore, either fail to offer a
practical implementation or fall short of achieving the de-
sired performance. Therefore, a subjective evaluation of the
proposed method and the system were carried out to ensure
its pragmatic use.

In pathology, the color and texture of the tissue specimen
vary a lot depending on the stain, organ and tissue type. Pre-
viously proposed methods were trained with a homogeneous

In this paper, we have proposed a method that segments 
tissue artifacts from WSI and assesses their severity to guide 
the decision to eliminate them from analysis and diagnosis. 
Existing methods are impractical in this regard, as they often 
eliminate a region if it is overlapped by the artifact regardless 
of its size and impact on further analysis. This could result in 
the loss of significant regions and lead to inaccurate analysis. 
The proposed method incorporated the severity assessment 
of artifact affected regions with the artifact segmentation for 
precise automated analysis. This type of system is crucial 
for developing a fully automated image analysis system for 
digital and computational pathology. The proposed method
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FIGURE 9. Selected Neural networks.

dataset and thus failed to achieve generalized performance
when applied to the specimen prepared under different con-
ditions. Therefore, we prepared a heterogeneous dataset that
contains specimens prepared by different laboratories having
different staining and organs, and the WSIs were scanned by
different scanners. The proposed method was validated on
this dataset to ensure generalization ability. The results were
then evaluated based on multiple objective metrics, such as
accuracy, IoU, AUC and precision. We also evaluated the re-
sults based on the pathologists’ scores in which the proposed
method achieved high concordance. This type of subjective
evaluation is really useful to ensure the routine application of
the system in hospitals and pathology laboratories.

Additionally, the practical usability of the proposed
method was evaluated for routine clinical use based on
the feedback of pathologists and technicians. The proposed
method also achieved the practical requirement of time by
utilizing the low magnification WSI such as 1X WSI for
segmentation and severity assessment in contrast with the
Janowczyk et al. method [22] that relies on 40X image.

However, the proposed artifact detection method can un-
expectedly detect artifact-free regions as false positives. The
severity evaluation method should then classify the false
positives as low severity in order to deal with it. However,
such experiments were not included in this study. Another
limitation is that the effect of image magnification on the
severity assessment result was not studied and the experiment
only used 1X magnification images. However, the proposed
method achieved a satisfactory accuracy of 97%.

VI. CONCLUSION
In this paper, we proposed a practical artifact detection
method by incorporating artifact segmentation and severity
assessment for an autonomous image analysis system for
digital and computational pathology. In addition, a hetero-
geneous dataset was prepared for evaluating the artifact
detection method. The proposed system was found robust
in the demonstration using the heterogeneous dataset. The
proposed method achieved approximately 99% accuracy for
artifact segmentation which is higher than any previous meth-
ods. Plus, it determined the severity of artifacts with 97% ac-
curacy which was not considered in the earlier methods. The
result of our severity assessment experiment suggests that
the ensemble architecture achieves more stable classification
performance compared to the individually trained models
when tested on a heterogeneous dataset. In the artifact seg-
mentation experiments, the DoubleU-Net model was found
more accurate than the ResUnet++ for different parameters.
The practical usability of the system was also evaluated
by integrating it with the pathology workflow. Then, the
system was validated for routine clinical application using
both objective and subjective approaches.

In the future, the detection of pen marks, tissue dust
and other artifacts can be included. The application of non-
CNN models such as vision transformers can be evaluated
for the proposed work. The development of a WSI plug-in
to integrate the proposed method with the WSI viewer is
another future work.
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