
Independent University Bangladesh (IUB)

IUB Academic Repository

Research Articles 2023

2023

Develop a System to Analyze Logs of

a Given System Using Machine Learning

Hasan, Md. Tarek

Independent University, Bangladesh (IUB)

https://ar.iub.edu.bd/handle/123456789/575

Downloaded from IUB Academic Repository

Develop a System to Analyze Logs of a Given
System Using Machine Learning

Md. Tarek Hasan, Farzana Sadia, Mahady Hasan and M. Rokonuzzaman

Abstract Software error detection is a critical aspect of software development.
However, due to the lack of time, budget, and workforce, testing applications can
be challenging, and in some cases, bug reports may not make it to the final stage.
Additionally, a lack of product domain knowledge can lead to misinterpretation of
calculations, resulting in errors. To address these challenges, early bug prediction is
necessary to develop error-free and efficient applications. In this study, the author
proposed a system that uses machine learning to analyze system error logs and detect
errors in real time. The proposed system leverages imbalanced data sets from live
servers running applications developed using PHP and Codeigniter. The system uses
classification algorithms to identify errors and suggests steps to overcome them, thus
improving the software’s quality, reliability, and efficiency. Our approach addresses
the challenges associated with large and complex software where it can be difficult
to identify bugs in the early stages. By analyzing system logs, we demonstrate how
machine learning classification algorithms can be used to detect errors and improve
system performance. Our work contributes to a better understanding of how machine
learning can be used in real-world applications and highlights the practical benefits
of early bug prediction in software development.

Md. Tarek Hasan
Independent University, Bangladesh, Plot 16 Block B, Bashundhara R/A, Dhaka, Bangladesh. e-
mail: 2031276@iub.edu.bd

Farzana Sadia
Independent University, Bangladesh, Plot 16 Block B, Bashundhara R/A, Dhaka, Bangladesh. e-
mail: fsbornasets@iub.edu.bd

Mahady Hasan
Independent University, Bangladesh, Plot 16 Block B, Bashundhara R/A, Dhaka, Bangladesh. e-
mail: mahady@iub.edu.bd

M. Rokonuzzaman
North South University, Plot 15 Block B, Bashundhara R/A, Dhaka, Bangladesh. e-mail:
m.rokonuzzaman@northsouth.edu

1

Draft Version

2 Md. Tarek Hasan, Farzana Sadia, Mahady Hasan and M. Rokonuzzaman

1 Introduction

In today’s data-driven world, data plays a significant role in almost every aspect of our
lives. As more and more businesses rely on data analysis to drive decision-making,
the importance of accurate and error-free data has become increasingly apparent
(Hossen, & Sayeed, 2018). Large-scale data sets are collected and evaluated across
various industries, and the problem of errors within those data sets has become more
pressing. One common source of data for software applications is system logs, which
often contain valuable information and error messages. However, many researchers
and analysts overlook the importance of proper data cleaning and preparation before
analysis (Hossen, & Sayeed, 2018).

This paper focuses on analyzing system logs to identify and address errors using
machine learning techniques. The goal is to provide guidelines and solutions for
optimizing software performance and reliability. By leveraging machine learning al-
gorithms, this study aims to predict errors and provide solutions to prevent instability
or inconsistency in the software during the development life cycle.

To achieve this goal, the proposed framework includes a search-based testing
approach using deep neural networks. The framework incorporates strategies for
code embedding, refactoring policy, mutation testing, and evaluating test cases. The
system logs are preprocessed and analyzed using machine learning algorithms to
identify patterns and predict errors. The resulting guidelines and solutions can be
applied to any application logs, and the proposed data mining export code can be
easily adapted for use in other settings.

Ultimately, the goal of this study is to contribute to the development of error-free
software by providing a set of cleansed data for further investigation and analysis.
By focusing on data quality and leveraging machine learning techniques, we hope to
improve software performance, reliability, and efficiency.

The problem of the paper is related to the issues faced by companies due to the
delivery of software without proper testing[15] and quality checking, resulting in
increased development costs. Additionally, there are difficulties in creating unique
or unfamiliar business transactions in the testing environment. Furthermore, even if
the software is running well, errors in logs may arise due to not following proper
standards or unknown process cycles. These errors may not stop the application’s
execution, but the author creates a considerable amount of logs in the production
server, which affects performance and stability. Missing data integrity can also create
errors and faults in transactions. Therefore, the paper aims to deal with these log
issues and provide guidelines for their resolution without human intervention. The
authors propose a unified algorithm for data cleansing, and the focus is on analyzing
the logs of systems running in the production environment. The authors suggest
machine learning algorithms to detect errors and propose solutions to optimize
them to create an error-free application. The author aims to create a framework for
analyzing big data to improve fault detection and problem identification.

The authors aim to develop a unified algorithm that can resolve data quality issues
in unclean logs without the need for human intervention or master data (Al-janabi, &
Janicki, 2016). The focus of their study is on analyzing the logs of running systems

Develop a System to Analyze Logs of a Given System Using Machine Learning 3

in the production environment to provide guidelines and solutions for optimizing
errors and creating error-free applications. They run machine learning algorithms to
identify errors in the logs and suggest solutions to overcome them. The authors also
emphasize the need for a framework for analyzing big data to improve fault detection
and problem identification during data preprocessing (Hossen, & Sayeed, 2018).

2 Literature Review

In recent years, the use of machine learning for log analysis has gained significant
attention in the field of software engineering (Mehra & Verma, 2019). Researchers
have proposed various techniques and models for log analysis to improve software
reliability, performance, and maintainability.

One approach is to use clustering algorithms to group log messages based on
their similarity, which can help to identify common patterns and anomalies in the
log data (Li et al., 2016). Another approach is to use classification algorithms to
detect and categorize different types of log messages, such as errors, warnings, and
informational messages (Xu et al., 2018).

Researchers have also explored the use of natural language processing (NLP)
techniques for log analysis, such as topic modeling and sentiment analysis, to gain
insights into the causes of log messages and to identify potential areas for improve-
ment (Zhou et al., 2019).

In addition to machine learning, researchers have also proposed other approaches
for log analysis, such as rule-based systems and pattern-matching techniques (Mehra
& Verma, 2019). Rule-based systems use predefined rules to detect specific types
of log messages, while pattern-matching techniques search for specific patterns or
sequences of log messages that may indicate a problem.

Despite the various approaches proposed for log analysis, there are still challenges
and limitations in this field. One challenge is the complexity and variability of log
data, which can make it difficult to develop accurate models and algorithms (Li et al.,
2016). Another challenge is the lack of labeled data for training and testing machine
learning models, which can limit their effectiveness (Xu et al., 2018).

Despite these challenges, the potential benefits of log analysis using machine
learning are significant, including improved software quality, reduced downtime,
and increased productivity (Zhou et al., 2019).

3 Research Design

The aim of this research is to detect and classify system errors by using a Random
Forest feature selection algorithm, to minimize the error rate and predict possible
error solutions based on current errors.

4 Md. Tarek Hasan, Farzana Sadia, Mahady Hasan and M. Rokonuzzaman

3.1 Data Collection

The system log files will be collected from a live-running application that is privately
available. The data will be selected from a specific time period to ensure consistency
in the data. The dataset will be cleaned using the random sampling technique to
reduce the size of the dataset and make it more manageable. Those applications
are creating a huge number of log files (Al-janabi, & Janicki, 2016) where authors
have seen many error tags. Since the logs are huge and there is a lack of a big data
handling machine. The author picked up 1 week of data from 2021, which are about
921MB,

3.2 Data Pre-processing

Data pre-processing is an essential step to ensure data quality and prepare the dataset
for analysis. The data will be translated into a structured format and validated to
handle missing values correctly. Data cleaning techniques will be used to remove
null values and incomplete data. To achieve high accuracy, it is also necessary to
handle missing values correctly (Hossen, & Sayeed, 2018). To programmatically
prepare those files, one must first convert the raw log file to a CSV file (DIMOV &
OROZOVA, 2020). An algorithm has been developed to mine the dataset and extract
only error logs.

Example of a Computer Program in PHP:

Begin

$finalFile = fopen(’file.csv’, ’a’);

$GetData = array_map(’str_getcsv’, file(’file.csv’));

for ($n=0;$n<=count ($GetData); $n++)

{

$EechLineData = $GetDatal[$n];

$ExplodeLog = explode(’delimiter’,$EechLineData);

$Explodeagain = explode(’basedOnNeed’,$Explodelog);

if ($Explodeagain=="Error")

{

//run validation process

//check for meaning full data

$a = ’CleanData’;

fputcsv($finalFile, $a, delimiter: ™,");
}

}

End.

Develop a System to Analyze Logs of a Given System Using Machine Learning 5

3.3 Feature Selection

Feature selection is a crucial step in the data mining process, which involves iden-
tifying and selecting the most relevant features for analysis. Random Forest feature
selection will be used to select the most relevant features for analysis. The algorithm
will be trained on the dataset, and the most important features will be selected for
analysis.

3.4 Error Detection and Classification

The selected features will be used to detect and classify system errors. The algorithm
will be trained to predict possible error solutions based on current errors. The error
logs will be categorized into groups based on the feature selection method to identify
patterns and relationships between errors.

3.5 Evaluation

The performance of the algorithm will be evaluated based on accuracy and precision.
The results will be compared to existing methods for detecting and classifying system
errors. The data was not organized because it was gathered in its raw form, from
sources. It contains null values, incomplete data, some missing values, and a sampling
date format that is inconsistent. Thus, data analysis had to be performed using any
relevant language and algorithm to check the dirtiness of the data, and then a well-
structured dataset could be generated using data cleaning techniques, algorithms,
and procedures, which could then be used for analysis or visualization (Kumar, &
Khosla, 2018)

Fig. 1 Data analysis model.

6 Md. Tarek Hasan, Farzana Sadia, Mahady Hasan and M. Rokonuzzaman

The research will provide insights into the causes of system errors and offer
possible solutions to minimize the error rate. The Random Forest feature selection
algorithm will be useful in identifying the most relevant features for analysis, and
the error classification system will provide a framework for predicting possible error
solutions. The results of this research will contribute to the field of data mining and
error analysis.

The study will only consider a specific time period and may not provide a compre-
hensive analysis of system errors. The dataset is based on a live-running application,
and the results may not be generalizable to other applications. The study may also
face computational limitations due to the large size of the dataset.

4 FINDINGS

To achieve a clean, error-free data set for analysis in machine learning, pre-processing
raw data is a critical step, as outlined by Haider, Zhao, and Meran (2020). In this
study, customized algorithms were employed to clean the data, and Python or R are
recommended for this task due to their built-in libraries for statistical analysis and
interpretation, as noted by Hossen and Sayeed (2018). The data analyzed in this
study covers a one-week period, during which a total error count of 4042852 was
observed.

Upon analysis of the cleaned data set, it was found that only warning and notice-
type errors occurred, which did not cause the application to stop executing any script.
These types of errors are non-fatal and do not halt script execution. The cleaned data
set contains various columns related to the data, such as Title (log type), Type (error
type), the affected variable and line number, error, and filename. Table I provides an
overview of our cleaned data.

Table 1 Mined Data Set
Title Type Variable,Line File

ERROR Notice payment, 192 /controller/./billing.php
ERROR Notice courses, 119 /controller/./billing.php
ERROR Notice semester,120 /controller/./billing.php
ERROR Warning LastName,63 /controller/./landing.php

Table II illustrates the error frequency which has been generated using Anaconda
a big data handling tool. The first column contains information about the error type,
then the second column represents the error file location and the third column shows
how many errors occurred on those files.

According to the information author gathered, the following errors were discov-
ered, mentioned in Table III:

Develop a System to Analyze Logs of a Given System Using Machine Learning 7

Table 2 Error type and Frequency
Error Type Occurred Frequency

Notice controller and view files 36,40,423
Warning View file 3,99,861

Table 3 Most occurred error
1 Invalid argument supplied for foreach()
2 Trying to get property of non-object
3 Undefined property

To represent the analyzed data insight visualization software such as Tableau,
Power BI, or Rapid Miner could be used (Kumar, & Khosla, 2018). As the author is
familiar with Rapid Miner, it has been used to analyze data.

Table 4 Occurred Errors
Errors Frequency Fraction

Undefined property 2494821 0.62
get property of non-object 1038676 0.21
Invalid argument foreach() 358041 0.09

Table IV contains information about different types of errors and their absolute
value fraction in a system. There are three types of errors listed in the table: ”Un-
defined property,” ”get property of non-object,” and ”Invalid argument foreach().”
For each type of error, the table provides the number of occurrences (absolute value)
and the fraction of their occurrence in the system. The total number of errors listed
in the table is 3, and the total number of occurrences is 4,005,538.

Table 5 Most occurred error
Title Errors Type

ERROR Notice
ERROR Notice
ERROR Warning
INFO Some Text
INFO Some Text

ERROR Warning
ERROR Notice

Table 5 is used to detect system total error and non-error count which has shown
in Figure 2.

Raw data is often incomplete, inconsistent, and redundant, making it unsuitable for
direct data mining. Therefore, advanced analysis techniques are required to process

8 Md. Tarek Hasan, Farzana Sadia, Mahady Hasan and M. Rokonuzzaman

Fig. 2 Error rate

the data (Haider, Zhao, & Meran, 2020). In this study, the author decided to use
one day of acquired data and apply machine-learning techniques (Hossen & Sayeed
(2018). The data had a shape of (475680, 5), but since the CSV file did not provide
numeric data, a method for transforming nominal data into numeric features was
used (Zdravevski, Lameski, Kulakov, & Kalajdziski, 2015). To detect whether each
row of the data represents an error or not, the raw data had to be converted into
a numerical format (Hong, Ashwin, Johnson, & Xiaofei, 2016). Excel was used to
generate the desired pattern, which can be seen more clearly in Figure 3.

Table 6 Error Pattern Mining
Log Tag Type – – –
ERROR Notice 1 1 1
INFO Text 0 4 0
INFO Text 0 4 0

ERROR Notice 1 1 1
ERROR Warning 1 2 1
ERROR Warning 1 2 1

The inclusion of the affected file name and line number in the cleaned data set
mentioned in Table I is expected to be beneficial for future research. With this
information, an AI system can locate faulty files and affected variables mentioned
there, and suggest solutions for the identified issues. In addition, a new approach
called Deep Check can be proposed for testing Deep Neural Networks (DNN) using
symbolic execution and program analysis. Deep Check uses a white-box technique
to facilitate symbolic execution and identify critical elements in the DNN. (Wardat,
Le, & Rajan, 2021).

In order to utilize the data for analysis, it was transformed into a structured format.
To ensure its reliability, the information was verified and checked for any instances
of missing data. (Hossen & Sayeed, 2018).

Our proposed methodology requires the use of supervised learning, with logistic
regression being the preferred model due to our data’s pattern. Given the large input
data, it is more convenient to create a prediction model. To ensure the accuracy of

Develop a System to Analyze Logs of a Given System Using Machine Learning 9

the preprocessing, mining patterns, and analysis, we selected a single day’s data to
train and test the logistic regression model. The system must differentiate between
errors and non-errors in the selected data. We split the data into training and test
sets, with 20% used for testing and 80% for training, resulting in a total dataset of
(475680, 2), with (380544, 2) for training and (95136, 2) for testing.

4.1 Model Training

In order to proceed with the training phase, it is important to select a suitable data
source and identify key features that are critical to the process. The accuracy of
the trained model must then be evaluated to ensure that it produces reliable results.
Subsequently, the ML model can be utilized to make predictions based on data
analysis. (Hossen, & Sayeed, 2018).

Fig. 3 Training Process

It is suggested to use a technique such as oversampling or undersampling to bal-
ance the distribution of the imbalanced data during model training. Oversampling in-
volves increasing the number of instances of the minority class, while undersampling
involves decreasing the number of instances of the majority class. Both techniques
can help to ensure that important information is not lost during the elimination of
examples. Additionally, the authors wanted to consider using a more sophisticated
sampling technique such as SMOTE (Synthetic Minority Over-sampling Technique)
or ADASYN (Adaptive Synthetic Sampling) to create synthetic instances of the mi-
nority class, which can help to improve the balance of the dataset. By incorporating
these techniques, the authors can improve the quality of their model and ensure that
it produces accurate results. (Gao, Khoshgoftaar, & Napolitano, 2012).

4.2 Model Evaluation

Precise information is a crucial factor in information analytic execution due to
location and anticipation. The author observed a training data accuracy of 0.83 after
removing the complete out layer, indicating the accuracy of their hypothesis. The

10 Md. Tarek Hasan, Farzana Sadia, Mahady Hasan and M. Rokonuzzaman

high accuracy can be attributed to the thorough preprocessing and mining of the data
sets. Eliminating the outer layers resulted in a higher accuracy of 87 percent in clean
data sets. The Random Forest classifier was used to train and construct a model to
recognize data quality from the dataset (Hossen, & Sayeed, 2018). After the removal
of the entire outlier and the evaluation of Random Forest, the application achieved
an accuracy of 83 percent. This high accuracy was possible due to the high quality of
the processed data. Therefore, the conclusion is drawn that to achieve high accuracy,
reliable data is necessary. A distributed algorithm like mining outliers can be used
to make data sets more reliable (Liu, Guo, & Sun, 2017).

The results of the ML analysis showed that errors in the log file can indicate errors
in the system. Therefore, by predicting errors in the log files, the author can detect
errors in the system.

5 PROPOSED MODEL

The proposed solution suggested by the authors includes building a data-cleaning
function using machine learning algorithms to predict potential errors in data. To
further improve the application’s quality, the authors suggest creating loosely coupled
modules and classes with global variable declarations and high cohesion. The actual
code-writing process should involve array or variable declarations, type declarations
of variables, isset checks, empty value checks, and type checks before using any
variables. Finally, a Unit test is recommended to optimize unwanted errors.

To incorporate this proposed solution, developers can follow these guidelines
during the development process of an application or feature to reduce the chances
of errors and bugs. By creating loosely coupled modules and classes with global
variable declarations, developers can make sure that their code is easy to maintain
and update. Moreover, by following the suggested coding practices, such as array
or variable declarations, type declarations of variables, isset checks, empty value
checks, and type checks before using any variables, developers can ensure that their
code is error-free and more reliable. Finally, by conducting a Unit test, developers
can identify and optimize any unwanted errors, further improving the application’s
overall quality.

Overall, incorporating these guidelines into the development process can optimize
the production cost and time, make the application scalable, reliable, and faster, and
ultimately, ensure an error-free log or output.

6 CONCLUSIONS

The purpose of this study was to create a data cleaning function that can improve
data quality by identifying and predicting errors. The research question focused on
whether machine learning techniques can be used to improve data quality in software

Develop a System to Analyze Logs of a Given System Using Machine Learning 11

Fig. 4 Proposed Model.

applications. The literature review highlighted the importance of data cleaning in
machine learning and the use of various techniques such as classification models to
identify and correct errors in software applications.

The study analyzed one week’s worth of data and found a total of 4042852 errors,
which were mainly warning and notice-type errors. The data cleaning function
developed by the authors was able to identify and correct these errors, leading to
improved data quality. The authors also provided guidelines for developing error-free
software applications, including loosely coupled module creation, global variable
declaration, and unit testing.

Future work could focus on expanding the scope of the study to include data
from multiple sources and different time periods. The authors could also explore the
use of other machine learning techniques, such as clustering, to identify and correct
errors in software applications. Also, more data structuring recommendations will
be included. Integrity constraints (IC), such as Functional Dependencies (FD), can
be used in conjunction with Machine Learning to classify the type of error to be
captured in the event of a data set with an inaccurate value (Hossen, & Sayeed,
2018). To fully appreciate the data’s potential for bringing significant benefits to a
variety of businesses, it is necessary to learn from it (Haider, Zhao, & Meran, 2020).
Some ”Context of source code processing” will be considered where a mutation in
the context plays as refactoring source code and 1-Time, K-Time mutation will be
played an important role in the concept (Maryam, Zhuo, Lei, Hadi. 2021). In that
study, the author will focus on a few research questions, and the author will try to
solve them one by one by considering best practices.

12 Md. Tarek Hasan, Farzana Sadia, Mahady Hasan and M. Rokonuzzaman

In conclusion, this study demonstrated the importance of data cleaning in machine
learning and provided a solution for improving data quality in software applications.
By using machine learning techniques and following the guidelines provided by
the authors, software developers can create error-free and efficient applications that
are scalable, reliable, and faster. Future research in this area could lead to further
improvements in data quality and software development practices.

References

1. Hossen, J., & Sayeed, S. (2018, September). Modifying cleaning method in big data analytics
process using random forest classifier. In 2018 7th (ICCCE) (pp. 208-213). IEEE.

2. Al-janabi, S., & Janicki, R. (2016, July). A density-based data cleaning approach for dedu-
plication with data consistency and accuracy. In 2016 SAI Computing Conference (SAI) (pp.
492-501). IEEE.

3. Mehra, S., & Verma, R. (2019). An approach towards log analysis of large-scale systems.
International Journal of Computer Applications, 181(41), 18-22.

4. Li, Q., Zhao, C., & He, X. (2016). A clustering-based log analysis approach for improving
software reliability. Journal of Systems and Software, 118, 197-212.

5. Xu, X., Li, Y., Wang, Y., Li, X.,& Li, B. (2018). Log classification based on multi-view feature
learning. Information and Software Technology, 98, 126-139.

6. Zhou, M., Zhang, Z., Li, Y., & Zhang, H. (2019). Log analysis using natural language processing
techniques: A survey. Journal of Systems and Software, 151, 99-115.

7. DIMOV, T., & OROZOVA, D. (2020, June). Software for Data Cleaning and Forecasting. In
2020 21st International Symposium on Electrical Apparatus & Technologies (SIELA) (pp.
1-4). IEEE.

8. Kumar, V., & Khosla, C. (2018, January). Data Cleaning-A thorough analysis and survey on
unstructured data. In 2018 8th International Conference on Cloud Computing, Data Science &
Engineering (Confluence) (pp. 305-309). IEEE.

9. Wardat, M., Le, W., & Rajan, H. (2021, May). DeepLocalize: fault localization for deep neural
networks. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)
(pp. 251-262). IEEE.

10. Gao, K., Khoshgoftaar, T. M., & Napolitano, A. (2012, December). A hybrid approach to
coping with high dimensionality and class imbalance for software defect prediction. In 2012
11th international conference on machine learning and applications (Vol. 2, pp. 281-288).
IEEE

11. Haider, S. N., Zhao, Q., & Meran, B. K. (2020, July). Automated data cleaning for data centers:
A case study. In 2020 39th Chinese Control Conference (CCC) (pp. 3227-3232). IEEE.

12. Maryam V.Pour, Zhuo Li, Lei Ma, Hadi Hemmati. 2021. A Search-Based Testing Frame-
work for Deep Neural Networks of Source Code Embedding. Calgary, Canada. DOI:
https://doi.org/10.1145/1188913.1188915.

13. Zdravevski, E., Lameski, P., Kulakov, A., & Kalajdziski, S. (2015, September). Transformation
of nominal features into numeric in supervised multi-class problems based on the weight of
evidence parameter. In 2015 Federated Conference on Computer Science and Information
Systems (FedCSIS) (pp. 169-179). IEEE.

14. Hong Liu, Ashwin K. TK, Johnson P Thomas and Xiaofei Hou. 2016. Cleaning Framework
for BigData.

15. Hasan, M. T., Mahal, S. N., Bakar, N. M. A., Hasan, M. M., Islam, N., Sadia, F., Hasan, M.
(2022). An Unified Testing Process Framework for Small and Medium Size Tech Enterprise
with Incorporation of CMMI-SVC to Improve Maturity of Software Testing Process. In ENASE
(pp. 327-334).

