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The EEG signals were used in many medical and technological applications such as diagnosis of diseases,
rehabilitation of disabled peoples, preventive healthcare, BCI (brain computer interface) systems. EEG
signal is prone to the physiological and non-physiological artifacts which severely affect them and lead
to its misinterpretation. An automatic method and/or algorithm; for handling EEG artifacts; is proposed.
The proposed method is based on three statistical parameters (entropy, kurtosis and skewness), fuzzy
inference system (FIS) and stationary wavelet transform (SWT). Each incoming EEG epoch is described
using these three statistical parameters. Based on the extracted statistical parameters, the designed FIS
decides if an epoch is artifactual or not. Then SWT is used to decompose the EEG epoch into detail and
approximation coefficients. To reduce the effect of artifact removal, we propose to use other fuzzy infer-
ence systems, which allow to select the contaminated wavelet coefficients. The universal thresholding
method is then applied to the corrupted coefficients. Finally, the inverse SWT applies to the thresholded
and non-corrupted coefficients to restore the cleaned EEG signal. The performance of the proposed
method in terms of amount of artifact removal and signal distortion is evaluated in three scenarios: fully
simulated, semi-simulated, and real artifactual EEG data. The comparison of our method with some exist-
ing state-of-the-art methods shows the superiority of our method over others in terms of performance
and computational time.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The EEG signal (Electroencephalogram) is one of the most used
biosignals in a wide range of medical and non-medical applica-
tions. In the medical field, the EEG signal is used in diagnosis and
preventive of neurological diseases and in the study of the brain
function. Brain computer interface (BCI) is one of the most known
applications of EEG signal in non-medical field. A BCI system is an
intelligent system that allows the user to control the external
devices, such as robotic limbs, exoskeletons, and computers, with-
out passing through a neural pathway. At the beginning, the BCI
systems are developed to help disabled people to improve their
life. Recently, with technological and medical development, i.e.
improved sensor, wireless data transfer, cloud computing, flexible
and wearable electronics, new applications of EEG signals are
emerged such as, preventive health care, patient health monitor-
ing, robotics, etc. (Abdulkader et al., 2015).

Electroencephalography is the used recording technique to
measure the EEG signal. It consists to measure the electrical activ-
ity of brain by placing electrodes on the scalp. EEG technique is one
of the most attractive signals in several applications due to non-
invasive, portable, acceptable temporal resolution, and low cost.
Unfortunately, the EEG signals are commonly prone to the artifacts
that originate from other sources other than brain. The artifacts in
the EEG signal are classified into physiological and non physiolog-
ical artifacts. The physiological artifacts known also as internal
artifacts originate from the physiological activities of the subject.
These artifacts include ECG artifact (electrocardiogram), EOG arti-
fact (electrooculogram) which is due to eye movement and eye
blink, EMG artifact (electomyogram) which is due to the muscle
activity. Non-physiological artifacts are mainly due to the different
sources of the electrical field, environment and movement. These
artifacts comprise, electrode pop, 50/60 Hz power line artifact, sub-
ject movements. The different artifacts overlap with EEG signal in
temporal, spectral and sometimes in spatial domains. It leads to
misinterpretation of the EEG signal and take the incorrect
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decisions. In technological field, the artifact can lead to uninten-
tional control of the devices. For example, in the case of BCI appli-
cation, the artifacts can lead to morphological change of a neural
activity that drives the BCI system to make a false decision. In
the medical field, artifacts can lead to prompting incorrect treat-
ment. For example, in the case of preventive epileptic seizure,
the artifacts can mimic the shape of the epileptic seizure that lead
to false alarms (Seneviratne et al., 2013).

In the early applications of the EEG signal, the experts identify
visually the EEG segments corrupted by the artifacts and reject
them. This approach leads to lost the neural activity. Recently, with
the emergence of new applications of the EEG signal, several meth-
ods have been developed to detect and remove the artifacts from
the EEG signal (Islam et al., 2016). However, there is no an efficient
method that provides a complete solution for handling EEG arti-
facts. Some methods are specified in removing of particular arti-
facts, for example EOG (Nguyen et al., 2012), EMG (Chen et al.,
2019), EMG and EOG (Hu et al., 2015), ECG and eye blinks
(Shoker et al., 2005), motion artifacts (Kilicarslan and Vidal,
2019), 50/60 power line artifacts (La Rosa et al., 2021). Other meth-
ods such as adaptive filtering (Molla et al., 2012; Borowicz, 2018)
and regression (Bengtsson and Cavanaugh, 2006) methods can
not perform if the reference channel or prior information are not
available. Blind source separation methods like ICA (independent
component analysis) and CCA (canonical component analysis)
can work only in multi-channel EEG recording (Kanoga et al.,
2020; Mahapatra et al., 2018). Empirical mode decomposition
(EMD) method is used only in single EEG signal recording and is
not suitable for online application since it costs in term of compu-
tational time (Islam et al., 2021; Martis et al., 2012). Thus, it is
needed to develop newmethods that are able to overcome the lim-
itations of the existing artifact handling methods. There is a strong
urge of that specially with the emerging trends of the EEG signal
such as BCI and continuous ambulatory monitoring applications.

In this paper, we proposed an automatic method to detect and
remove the artifacts from the EEG signal. This method is
independent of artifact types, can perform for both single and
multi-channel recordings, does not require a reference channel.
In addition, it does not need prior information, performs fully auto-
matically and does not require any user parameter adjustment.
Thus, these characteristics make this method more suitable in
pre-processor phase for different technological and medical
applications of the EEG signals.

The proposed method is based on the fact that the artifact char-
acteristics are different from those of the neural activity. In general
the artifact is a random signal with higher amplitude than EEG
background, tends to be transient unlike of EEG which is rhythmic,
makes a distribution of data asymmetrical instead of symmetric as
in the case of EEG background. In the proposed algorithm, for each
epoch of EEG signal, we calculate three statistical parameters,
namely entropy (a measure of disorder), skewness (a measure of
symmetry) and kurtosis (a measure of peakedness). These param-
eters are used as the inputs of a developed fuzzy inference system
which makes a decision if an epoch is artifactual or not. If an epoch
is artifactual, then the stationary wavelet transform (SWT) is used
to decompose the EEG epochs into its components. To reduce the
amount of distortion brings to the EEG signal, we propose to use
other fuzzy inference systems which allow to identify the contam-
inated SWT components. The universal thresholding method is
then used in order to remove the artifacts in the contaminated
components. Finally, the inverse SWT is used to reconstruct the
artifact-free EEG segments. The performance of the proposed
method is evaluated using fully simulated artifactual data (sce-
nario 1), semi-simulated artifactual data (scenario 2) and fully real
artifactual data (scenario 3). Qualitative and quantitative metrics
are used to demonstrate the performance of the proposed method
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both in terms of artifact removal and signal distortion. Moreover,
the proposed method is compared with some widely known meth-
ods in the literature both in terms of performance and computa-
tional time.

The rest of this paper is organized as follows. Section 2 presents
the related work. The proposed method is described in Section 3.
Section 4 presents the performance evaluation of the proposed
algorithm. Finally, Section 5 includes the concluded remarks.
2. Related work

Several methods have been proposed to hand with the EEG arti-
facts. Blind source separation based algorithms are one of the most
widely known methods especially, ICA, (Hyvarinen et al., 2001;
Zhang and Sanderson, 2007; Klados et al., 2011; Kanoga et al.,
2020), CCA (De Clercq et al., 2006; Gao et al., 2010) and MCA
(Yong et al., 2009; Mahapatra et al., 2018). The ICA aims to separate
multichannel EEG signals into their independent sources. Then, the
artifactual sources are manually removed. The principle of CCA is
based on second order statistics. It aims to separate the multiple
EEG signals into maximally uncorrelated components and then
the artifactual components are manually rejected before recon-
structing the artifact corrected EEG signals. These methods are
not suitable for online applications and cannot operate on few or
single-channel EEG. The MCA requires a prior morphological char-
acteristics on the artifacts. EMD and its version EEMD are other
popular methods to remove artifacts from EEG signals
(Safieddine et al., 2012; Molla et al., 2012; Martis et al., 2012). It
consists to decompose the EEG recording into multiple compo-
nents called IMFs. The computational complexity is one of the
main drawbacks of EMD or EEMD. The linear regression
(Bengtsson and Cavanaugh, 2006; Harrison et al., 2003) and adap-
tative filtering (Molla et al., 2012; Borowicz, 2018) based methods
are also used to handle the EEG artifacts especially ECG and EOG.
These methods need a reference channel, e.i., an extra electrode
or an extra algorithm. In several applications, the reference elec-
trode is not available and then the regression and adaptive based
methods are not suitable for such applications. On the other hand,
an extra algorithm means more time consuming, a thing which is
not suitable especially in on-line application. Wavelet transform
especially DWT and SWT are currently widely used in several med-
ical and non-medical applications (Sharma et al., 2015; Islam et al.,
2015; Ocak, 2009; Ghorbanian et al., 2012). It consists to decom-
pose the EEG signal into components known as approximation
and detail coefficients.

To benefit from the advantages of different methods, recently
several hybrid methods are proposed. Some authors proposed to
combine the BSS methods and wavelet transform, for example,
wavelet ICA (wICA) (Azzerboni et al., 2004; Mammone et al.,
2011) and wavelet enhanced ICA (Castellanos and Makarov,
2006), CCA-SWT (Mowla et al., 2015; Raghavendra and Dutt,
2011). The works (Chen et al., 2014; Mijović et al., 2010;
Sweeney et al., 2012) proposed artifact handling hybrid methods
based on the association of BSS and EMD or EEMD. To remove
ECG and EOG automatically in online applications some authors
proposed to combine the BSS and regression techniques (Klados
et al., 2011; Mannan et al., 2016; Wang et al., 2014; Guarnieri
et al., 2018). In recent times, several works are proposed to com-
bine the performance of machine learning methods and BSS tech-
niques or wavelet transform. These methods have been introduced
to detect and remove automatically the artifacts from the EEG sig-
nals. BSS-machine learning techniques combines one of the BSS
methods and one of machine learning methods (e.g. SVM, ANN
or fuzzy logic) (Yasoda et al., 2020; Radüntz et al., 2017). In
Phadikar et al. (2020), Nguyen et al. (2012) and Tibdewal et al.
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(2015), authors proposed to associate the wavelet transform with
machine learning methods. To remove cardiac artifacts from sleep
EEG recordings, authors of Ranjan et al. (2022) proposed a hybrid
method which includes an adaptive threshold-based nonlinear
Teager-Kaiser energy operator (TEO), empirical wavelet transforms
(EWT), customized morphological filter and modified ensemble
average subtraction (MEAS). They showed that the proposed
method is efficient and removes the cardiac artifacts without
affecting much the EEG activity. In Shukla et al. (2021) the authors
presented an automatic algorithm to eradicate motion artifacts
from EEG signals. This algorithm is developed using Gaussian elim-
ination CCA (GECCA) and EEMD. Shahbakhti et al. (2021) proposed
a novel method to remove the eye blink artifact from Fp1 EEG elec-
trode: firstly, the authors used variational mode extraction to iden-
tify and derive blink artifact from Fp1 electrode. Secondly, they
projected the identified eye blink artifact to the rest of electrodes
and then filtered by a combination of DWT and PCA (principal
component analysis). The authors of Placidi et al. (2021) developed
an automatic framework for removing artifacts from EEG signals.
They used ICA to decompose the EEG signal into ICs (independent
components) whose re-projection on Topoplots (2D topographies
of the scalp). Thereafter, the obtained Topoplots are used as inputs
of the Convolutional Neural Network (CNN) which divides them
into artifact components and free-artifact EEG components.

Another efficient and promising way to detect if an epoch of
EEG recording is artifactual or not is to use the statistical parame-
ters. Once an artifactual epoch is detected, the denoising method
like wavelet based thresholding can be used to remove the arti-
Fig. 1. Flowchart of the proposed method for detect
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facts. In Islam et al. (2021) and Shahbakhti et al. (2019) authors
proposed to combine the statistical parameters and wavelet trans-
form to detect the artifact and remove them from the EEG signal.
Authors of Hussein et al. (2022) proposed to use EEG signal statis-
tics and ICA to conceal eye and muscle movement artifacts from
EEG signals. They showed qualitatively the performance of the pro-
posed approach in EEG artifact rejection. SWT and kurtosis are
used in Shahbakhti et al. (2021) to reject electrical shifts and linear
trend artifacts in EEG recordings. The authors showed that the pro-
posed method performed well than wICA and Enhanced wICA
(EwICA) algorithms.

3. Proposed method

The flowchart of the proposed algorithm is presented in Fig. 1.
This algorithm can be decomposed into three blocks, detection,
denoising and reconstruction. In the following, we discuss the prin-
ciple and the methods used in each block.

3.1. Detection block

3.1.1. Segmentation
The first step of our proposed algorithm is the segmentation of

the EEG signal, Sn, which is sampled at frequency f s. This aims to
divide the incoming EEG signal into m non-overlapped windows
or epochs, of size N. Lets xi denotes the ith epoch and is defined as:

xi ¼ Snðði� 1ÞN þ 1; ði� 1ÞN þ 2; . . . ; iNÞ: ð1Þ
ing and removing artifacts from EEG recording.
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It is worth mentioning that it is important to choose the dura-
tion of the segment, N=fs, carefully since it plays a key role in
detection of artifacts and removing them. Indeed, short duration,
e.g. N=fs < 1s, may not represent the neural activities properly
and thus mimic the waveform of the artifact. Therefore, denoising
such segment can increase the amount of distortion made to the
EEG signal. On the other hand, long duration, i.e. N=fs > several
second (e.g. 4s), may lead to artifacts being missed. Therefore,
the amount of artifact removal will be low. In addition, the choice
of an optimal epoch duration is important, since the EEG signal can
be considered as stationary during such epoch. Therefore, the sta-
tistical features in this epoch can be considered stationary too. In
our case, after trying different values empirically, we found that
the optimal N=fs is 1 s. In Islam et al. (2015) authors have consid-
ered epochs of three seconds in order to remove artifacts from sei-
zure data. In Islam et al. (2021) authors showed that one second
duration epoch is sufficient to detect and remove artifacts in the
case of BCI applications.

3.1.2. Statistical features
Based on statistical characteristics, it is possible to detect if an

EEG signal is artifactual or not. This can be done based on the fact
that the characteristics of artifacts are different from those of the
neural activity. In our algorithm, we verified that three statistical
parameters, Composite multiscale entropy (CMSE, a measure of
randomness), kurtosis (a measure of peakedness) and skewness
(a measure of symmetry), are sufficient to characterize different
artifacts.

� Composite multiscale entropy (CMSE)
CMSEis used to quantify the randomness of the samples in an
epoch. It takes lower values for an artifactual epoch and higher
values for artifact-free epoch. That means that the artifact is
more random than the neural activity. Lets x ¼ x1; x2; . . . xN a
discrete time signal of length N. In the CMSE method, at a scale
factor of s, the sample entropies of all coarse-grained time sig-
nal x, associate with different starting points of the coarse-
graining process, are calculated. The CMSE of x is then defined
as the mean of s sample entropy values (Wu et al., 2014):
CMSEðx; s;m; rÞ ¼ 1
s
Xs
k¼1

� ln
nmþ1
k;s

nm
k;s

 !
: ð2Þ

where m is a length of template vectors used to compute the
sample entropy of x; r is predefined tolerance, which is used to
decide if two template vectors are matched or not, nm

k;s repre-
sents the total number of m-dimensional matched vector pairs,
is calculated from the kthcoarse-grained time signal at a scale
factor s, and nmþ1

k;s represents the total number of ðmþ 1Þ-
dimensional matched vector pairs.

� Skewness (S)
S is used to measure the degree of symmetry or skewed of a sig-
nal around its mean. S is higher for artifactual epoch, while is
lower for clean epoch. Therefore artifacts have an asymmetrical
distribution with longer tail on one side of signal while the
background EEG has symmetrical distribution. It can be com-
puted using the following formula:
S ¼
1
N

XN
k¼1

ðxk � �xÞ3

1
N

XN
k¼1

ðxk � �xÞ2
 !3=2 : ð3Þ

where N is the length of signal x and �x is its mean. S can be pos-
itive, signal skewed right, negative, signal skewed left, or null,
the signal is perfectly symmetrical.
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� Kurtosis (K)
Kis a measure of peakedness of a signal. An artifacual epoch has
higher kurtosis than the artifact-free EEG. That means that the
artifact is characterized by higher amplitude than the EEG sig-
nal. It is defined as:
K ¼
1
N

XN
k¼1

ðxk � �xÞ4

1
N

XN
k¼1

ðxk � �xÞ2
 !2 � 3: ð4Þ

The reference value of K is 3, which is the value of K for a normal
distribution. If K > 3, compared to a normal distribution, the
central peak of the signal is higher and sharper. While, if
K < 3, the central peak is lower and broader.

In the proposed algorithm, these statistical parameters are used
in two stages:

� In the first stage, we used these parameters to calculate the sta-
tistical features of an epoch, which will be used later in the first
decision stage to decide if an epoch is artifactual or not.

� In the second stage, to remove the artifacts without affecting
the neural activity, we propose to calculate the statistical fea-
tures of different approximation and detail coefficients of the
EEG signal. These features will be used in the second decision
stage to decide if an approx. or detail coefficient is artifactual
or not.

3.1.3. Fuzzy inference system (FIS)
As described in the flowchart of the proposed algorithm (see

Fig. 1), the FIS is used in two stages:

� In the first stage, the FIS is used to decide automatically if an
epoch is artifactual or not. Therefore, this method is an alterna-
tive of several methods which need the intervention of the user
or prior information to determine the artifactual epoch (Islam
et al., 2021; Klados et al., 2011; Kanoga et al., 2020).

� In the second stage, the FIS is used to make a decision regarding
denoising or not of an approx. or detail coefficient. In several
works once an epoch is marked artifactual, denoising operation
is applied to whole wavelet coefficients even if some of them
are not contaminated (Islam et al., 2021; Mammone et al.,
2011; Mowla et al., 2015; Raghavendra and Dutt, 2011). There-
fore, the amount of distortion is increased. Our approach is
based on the fact that almost all artifacts are localized in the fre-
quency domain. Thus, the proposed FIS allows to preserve intact
the clean frequency bands (approx. and detail coefficients).

At the level of the FIS each signal epoch, xi, is represented by a

set of features, xfi ¼ fcmsei; ki; sig extracted in the previous block.
The goal of the FIS is to assign a class Ci to the input signal, xi, from
the predefined class set C ¼ fartifact; artifact � freeg, based on the

set of features xfi . The first class, artifact, includes the artifactual
incoming epochs. While the second class, artifact � free, includes
the non artifactual epochs. The principle of FIS is based on a fuzzy
logic theory which aims to manipulate data that are not precise
based on the concept of fuzzy sets. In the classical theory of sets,
each element in the set is represented by a binary statement (0
or 1), e.i. either belong or not belong to the set and the transition
from one set to its neighbors is abrupt. While, in fuzzy set, an ele-
ment can belong to more than one set with different partial
degrees and the transition from one set to another may be gradual.
Lets A be a fuzzy set (or fuzzy variable) on the universe of discourse
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(or linguistic variable) U. A can be described as a set of ordered
pairs:

A ¼ fðu;lAðuÞÞju 2 Ug where 0 6 lAðuÞ 6 1 ð5Þ
where lAðuÞ is the membership function of u in A. The membership
function defines the degree with which each input u belongs to the
set A. It varied between 0 and 1. Several types of membership func-
tions can be considered such as trapezoidal, Gaussian, triangular, etc.
The choice of the appropriate membership function either in term of
form or boundary is one of themost important steps in the designing
of the FIS. This function has a direct influence on the results of the
classification since it defines the relation between the input variable
and the universe of discourse. In this work, we consider three uni-
verses of discourses, CMSE;K and S. The variation range of each of
these three variables is determined based on the calculation of,
entropy (CMSE), Kurtosis, and Skewness for different epochs of sim-
ulated clean EEG signal and simulated artifactual EEG signal. After
deep studying of the defined variation ranges, we have decided to
use trapezoidal membership functions. We have divided CMSE into
two fuzzy sets which are low and large. Low values of CMSE mean
that there are the artifacts, however, higher values mean that the
EEG epoch is free of artifacts. S is represented by two fuzzy sets:
low and large. Low values of Smean that the EEG signal is symmetric
and it is free of artifacts, however, higher valuesmean that the signal
is antisymmetric and it is probable to be artifactual. K is a collection
of three fuzzy sets: low, medium, and large. Low and high values of K
signify that the distribution of EEG epoch tends to be either horizon-
tal line (non-Gaussian) or Gaussian function with high amplitude. In
these two cases, it is possible that the EEG epoch is corrupted. How-
ever, medium values of K (standard amplitude of Gaussian function)
mean that the signal is free of artifacts. Mathematically, the trape-
zoidal function is defined as follows:

lðx; a; b; c;dÞ ¼ max min
x� a
b� a

;1;
d� x
d� c

� �
; 0

� �
; ð6Þ

where, a; b; c, and d are the x-coordinates of the four corners of the
trapezoidal function. Fig. 2 shows the membership functions for
each of the input variables (CMSE, K, or S) and the output classes,
C ¼ fartifact; artifact � freeg, which are used in the first decision
stage to decide if an epoch is artifactual or not. FIS takes a decision
based on a set of fuzzy rules. To build a FIS, it is needed to define
two main things: knowledge base and fuzzy reasoning method.
The knowledge base aims to divide the input space into a number
of fuzzy sets with appropriate fuzzy membership function and to
build a set of if � then fuzzy rules based on fuzzy sets. The fuzzy
reasoning method defines the procedure followed by the FIS to
make a decision. Different types of fuzzy rules were used. In our
case, the general form of fuzzy rules is:

Rj : if u1 is Aj1 and u2 is Aj2 and . . . and um is Ajm then
Class is Cj with xj: ð7Þ

where Rj; j ¼ 1;2; . . . ; L, is the jth rule, u ¼ fu1;u2; . . . ;uNg is a fea-
ture vector, Ajn;n ¼ 1;2; . . . ;m is fuzzy sets in antecedents, and xj

is the weight of the jthr ule. Table 1 shows the fuzzy rule base used
to decide if an epoch is artifactual or not. Several FIS were proposed
such as Mandani fuzzy model and Takagi–Sugeno fuzzy model. In
our case, we aim to develop a fuzzy classifier system that operates
on the vote. Here are the steps followed to classify an incoming EEG
segment, xi, which is represented by its feature vector,

xfi ¼ fcmsei; ki; sig:

� The first step aims to determine, for each rule Rj; j ¼ 1;2; . . . ;8,
- the satisfaction degree of the clauses (xfi ðnÞ is Anj), n ¼ 1; ::3
and j ¼ 1;2; . . . ;8. This degree defines the degree with which
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an input variable, xfi ðnÞ, belongs to the fuzzy set Anj and is deter-
mined by the membership function associated with

Anj : lAnj
ðxfi ðnÞÞ.

- the matching degree, bj, which determines the activation
strength of the if-part of the rule Rj with the incoming segment,
xi, and is defined as:

bjðxiÞ ¼ sumðlA1j
ðcmseiÞ;lA2j

ðsiÞ;lA3j
ðkiÞÞ: ð8Þ

- the association degree, ajk. This step consists to evaluate the
association degree of the segment, xi, with the output class of
the rule Rj. As described in Table 1, the output of each rule is
either artifact or artifact � free class. That means that the weight
of a class, xjk, is either one or zero. Thus the associate degree is
none other than the matching degree:

ajk ¼ bjðxiÞxjk; k ¼ 1;2: ð9Þ
� Aggregation step. This step consists to aggregate the outputs of
the rules in order to define the winner class. Several aggregation
operators can be used, in this work, the maximum operator is
used as the aggregation operator. The aggregation degree of
each class Ck is defined as:
ck ¼ maxðajkÞ; j ¼ 1;2; . . . ;8; k ¼ 1;2: ð10Þ

� Decision step is the final step which consists to define the out-
put class associate with the incoming EEG segment. The winner
output class (artifactor artifact � free) is the class which corre-
sponds to the highest aggregation degree.

3.2. Denoising block

As discussed in the related work several authors proposed to
denoise the EEG signal based on the wavelet thresholding method.
This method consists to decompose the EEG signal using wavelet
transform into approximation and detail coefficients. After that,
these coefficients are thresholded to remove the artifactual compo-
nents. However, in this work the wavelet transform is used to
decompose the EEG signal into approximation and detail coeffi-
cients, then the fuzzy inference system FIS2 (see Fig. 1) is used to
select the artifactual wavelet coefficients. Finally, the thresholding
method is applied to the contaminated coefficients. This approach
allows to preserve intact the cleaned coefficients.

3.2.1. Wavelet decomposition
There are several types of wavelet transforms such as continu-

ous wavelet transform (CWT), packet wavelet transform (PWT),
discrete wavelet transform (DWT), stationary wavelet transform
(SWT), etc. In the proposed algorithm, we chose to use SWT since
it is translational invariant. That means that slow variation in a sig-
nal properties can’t create a large variation in wavelet coefficients
and large changes in energy distribution in the different wavelet
scales (Safieddine et al., 2012). To use the wavelet transform it is
necessary to set two things: mother wavelet and decomposition
level. In the present work, we use the Haar wavelet as a mother
wavelet due to its capacity to follow the transient artifactual activ-
ities better than the other mother wavelets. The choice of decom-
position level is a function of the bandwidth of the EEG signal (i.e.
0.05–128 Hz) and the useful frequency band for the considered
application, e.g, for seizure study the useful frequency band is
0–32 Hz, for BCI applications, the interesting bands are deltað< 4
Hz) for ERP-based BCI applications, e.g. P300 (Schalk and
Mellinger, 2010) and for SCP-based BCI (Hou et al., 2017), mu(7–
13 Hz) and beta(14–30 Hz) for motor imagery based BCI
(Pfurtscheller et al., 2006) and SSVEP(12–18 Hz) (Muller-Putz and
Pfurtscheller, 2007). In the case of BCI applications based EEG, as



Fig. 2. Membership functions of FIS input variables (composite multiscale entropy (a), skewness (b), and kurtosis (c)) and membership function of the output classes (d).

Table 1
Rule base used in the FIS1 to decide if an epoch is artifactual or not.

Fuzzy rule base

R1: if cmse is high and k is medium and s is low then class is artifact � free
with 1

R2: if cmse is high and k is medium and s is high then class is artifact � free
with 1

R3: if cmse is high and k is low or high and s is low then class is artifact � free
with 1

R4: if cmse is high and k is low or high and s is high then class is artifact with
1

R5: if cmse is low and k is medium and s is low then class is artifact � free
with 1

R6: if cmse is low and k is medium and s is high then class is artifact with 1
R7: if cmse is low and k is low or high and s is low then class is artifact with 1
R8: if cmse is low and k is low or high and s is high then class is artifact with 1
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considered in this work, level-5 decomposition is usually selected
since this allows to cover different EEG frequency bands relevant
to the BCI applications. The application of SWT on the incoming
EEG segment, xi, with level-5 decomposition and Haar as a mother
wavelet provides the final approximation coefficient, ai5, and detail
coefficients fdi1; di2; . . . ; di5g. Table 2 illustrates the frequency
bands of the SWT coefficients, EEG rhythms, relevant BCI study
and artifact type.
3.2.2. Identify statistical features of different SWT coefficients
As in the case of the incoming EEG segment, each SWT coeffi-

cient is described by a feature vector which include its statistical
characteristics, i.e. cmse, s and k. The obtained feature vectors will
be used further to feed the FISs2 (see Fig. 1).



Table 2
Frequency bands of SWT coefficients, EEG rhythm, relevant BCI studies and artifact type.

Frequency bands (HZ) 64–128 32–64 16–32 8–32 4–8 0–4

SWT coefficients di1 di2 di3 di4 di5 ai5
EEG rhythms gamma gamma beta mu alpha theta delta
Relevant BCI studies motor imagery P300

SSVEP SCP
Artifact type EMG (8–64 Hz) ECG EOG

electrode pop (8–64 Hz) movement
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3.2.3. Identify the artifactual SWT coefficient
The same procedure presented in Section 3.1.3 is followed to

build 6 FISs2 systems, 5 for detail coefficients and 1 for approx.
coefficient. The feature vector which described each coefficient is
applied to its corresponding FIS2 to decide if this coefficient is arti-
factual or not. The artifactual coefficients are transferred to the
denoising stage while the non artifactual coefficients are preserved
intact.

3.2.4. Denoising
Denoising block consists to denoise the artifactual SWT coeffi-

cients. In the proposed algorithm, we chose to use non-negative
garrote shrinkage function (NNGSF) due to its interesting proper-
ties such as its low sensitivity to the input fluctuation, and low bias
(Hong-Ye, 1998). NNGSF allows to make a nice trade off between
the hard and soft threshold function in terms of amount of signal
distortion and artifact removal. Let’s denote
Bi , fai5; di1; di2; . . . ; di5g. NNGSF for a given coefficient bil 2 Bi, with
l ¼ 1;2; . . . ;6 is defined as:

gðbilÞ ¼
bil if jbilj < Til

T2il
bil

if jbilj > Til

(
ð11Þ

where Til is the threshold value for the coefficient bil and is defined
as Safieddine et al. (2012):

Til ¼ cil
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðNÞ

q
; ð12Þ

where N is the length of epoch and cil is the estimated noise vari-
ance for bil and is given by Castellanos and Makarov (2006)

cil ¼ medianðjbiljÞ
0:6745

: ð13Þ
3.3. Reconstruction block

The final block consists to reconstruct the EEG epoch, xi, by
applying the inverse SWT on the denoised coefficients and non-
artifactual coefficients. Finally, the cleaned EEG signal may be
obtained by combining different denoised and non-artifactual
epochs.

4. Performance evaluation

4.1. Data description

To evaluate the performance of the proposed method, we have
considered three types of data, fully simulated artifactual EEG (sce-
nario 1), semi-simulated artifactual EEG (scenario 2) and fully real
artifactual EEG (scenario 3).

4.1.1. Scenario 1
In this scenario, to make fully simulated data, we have linearly

combined the simulated EEG background activity with widely
known six simulated artifact templates (muscle atifact, eye blink
artifact, EOG artifact, slow movement artifact, electrode pop and
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cable movement) of different random amplitude and random dura-
tion. Fig. 3. (a) illustrates the process to synthesize the fully simu-
lated artifactual EEG signal. The simulated background EEG signals
are obtained based on the theory of the event related potentials
(ERPs) (Yeung et al., 2004).

4.1.2. Scenario 2
The database used in this scenario is obtained by adding lin-

early the six artifact templates to the pure real EEG background
activity. The characteristics of the used real EEG data base are pre-
sented in Table 3. Fig. 3(b) illustrates the process to generate the
semi-simulated EEG signals.

4.1.3. Scenario 3
In the third considered scenario, we have evaluated the perfor-

mance of our proposed algorithm using the fully real contaminated
EEG data. These data are collected from the BCI competition IV:
dataset-1 (Blankertz et al., 2007) and dataset-2a (Brunner et al.,
2008). Table 3 shows the description of these data sets.

4.2. Metrics for performance evaluation

Two categories of metrics are used to evaluate the performance
of the proposed algorithm. The first category allows to measure
how much artifacts have been removed. This category includes:
kð%Þ which represents the amount of artifact removal in percent-
age and DSNR which indicates the improvement in signal to noise
ratio (SNR). The second category is used to measure howmuch dis-
tortion it brings into the EEG signal. This category includes: the
improvement in the root mean square error (RMSE), DRMSE,
improvement in power spectral density, DPSD, improvement in
signal to noise and distortion ratio (SNDR), DSNDR, difference in
correlation, DCor, difference in coherence, DCoh. Correlation func-
tion is used to measure the similarity between two signals in time
domain. While coherence is used to measure similarity in the fre-
quency domain. It is worth mentioning that these metrics can be
used only in the case of synthesized data (fully simulated and semi
simulated). To calculate the different considered metrics, let
denote xref the reference signal (clean signal) of length, N; xart the
synthesized artifactual signal, and xrec the reconstructed signal (de-
noised signal). In addition, we defined the error signal before and
after artifact removal respectively as follows:

ebrðnÞ ¼ xartðnÞ � xref ðnÞ; ð14Þ

earðnÞ ¼ xrecðnÞ � xref ðnÞ; ð15Þ
� kð%Þ: the reduction in artifact in%, can be calculated as follows:
kð%Þ ¼ 100 1� Rref � Rref�rec

Rref � Rref�art

� �
; ð16Þ

where Rref ;Rref�rec , and Rref�art are the autocorrelation coefficient
of the reference signal at time lag 1, the cross-correlation coeffi-
cient between xref and xrec , and the cross-correlation coefficient
between xref and xart , respectively.



Fig. 3. Process to simulate the artifactual EEG signals: fully simulated artifactual EEG signal (a) and semi-simulated artifactual EEG signal (b).

Table 3
Description of the used databases.

No. of EEG
channels

Sampling frequency
(Hz)

Bandpass filtered
bandwidth

No. of
subjects

Additional
channels

No. of
classes

EEG/EOG (Klados and Bamidis,
2016)

19 200 0.5–40 27 EOG -

Dataset-1 (Blankertz et al., 2007) 64 1000 0.05–200 Hz 7 None 2
Dataset-2a (Brunner et al., 2008) 22 250 0.5–100 9 3 EOG 4
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� DSNR: the improvement in SNR, is defined as the difference
between SNR before artifact removal and SNR after artifact
removal:
DSNR ¼ 10log10

r2
ref

r2
ebr

 !
� 10log10

r2
ref

r2
ear

 !
; ð17Þ

where r2
ref ;r2

ebr
, and r2

ear are the variances of xref ; ebr , and ear ,
respectively.

� DRMSE: the improvement in RMSE, is calculated from the RMSE
before artifact removal, RMSEbr , and RMSE after artifact
removal, RMSEar , as follows:
DRMSEð%Þ ¼ 100 RMSEbr�RMSEar
RMSEbr

� �
;

RMSEbr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xn¼N

n¼1

ðebrðnÞÞ2
vuut ;

RMSEar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xn¼N

n¼1

ðearðnÞÞ2
vuut :

ð18Þ
� DPSD� dis: improvement in PSD distortion, is calculated using
the following formula:
DPSD� disð%Þ ¼ 100
PSDdisbr � PSDdisar

PSDdisbr

� �
; ð19Þ

where PSDdisbr and PSDdisar are the PSD before and after artifact
removal respectively, and are calculated from PSDxref ; PSDxart ,
and PSDxrec which are the PSD for xref ; xart and xrec:

PSDdisbr ¼
P

PSDxartð Þ2P
PSDxref

� �2 ; ð20Þ

PSDdisar ¼
P

PSDxrecð Þ2P
PSDxref

� �2 : ð21Þ

� DSNDR, improvement in SNDR, is calculated from SNDR before
and after artifact removal, SNDRbr and SNDRar:
DSNDR ¼ 1
N

X
SNDRar � SNDRbrð Þ; ð22Þ
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with

SNDRar ¼ 10log10
PSDxrec

PSDebr

� �
; ð23Þ

SNDRar ¼ 10log10
PSDxrec

PSDear

� �
; ð24Þ

where PSDebr and PSDear are the PSD of the error signal ebr and ear ,
respectively.

� DCor, difference in correlation is calculated from Rbr which is
the cross-correlation coefficient between xref and xart , and Rar

which is the cross-correlation coefficient between xref and xrec:
DCorð%Þ ¼ 100
Rbr � Rar

Rbr

� �
; ð25Þ
� DCoh, difference in coherence is obtained from Cohbr which is
the coherence coefficient between xref and xart , and Cohar which
is the coherence coefficient between xref and xrec:
DCohð%Þ ¼ 100
Cohbr � Cohar

Cohbr

� �
; ð26Þ

where Cohbr and Cohar are calculated using the following
formula:

Cohbr ¼
G2

xref xart

Gxref xref Gxartxart
; ð27Þ

Cohar ¼
G2

xref xrec

Gxref xref Gxrecxrec
; ð28Þ

where Gxref xref ;Gxartxart and Gxrecxrec are the auto-spectral density of
xref ; xart and xrec respectively, and Gxref xart and Gxref xrec are the
cross-spectral density between xref and xart and between xref
and xrec respectively.

4.3. Results

4.3.1. Scenario 1
In this scenario the proposed method was applied to fully sim-

ulated artifactual EEG data. Fig. 4 shows the artifactual signal, the
calculated statistical parameters in each epoch and the recon-



Fig. 4. Results of the proposed method on the scenario 1: Fully simulated artifactual EEG signal (a), composite multiscale entropy (CMSE) of different epochs (b), Skewness of
different epochs (c), kurtosis of different epochs (d), and reference (red line) and reconstructed (blue line) EEG signals (e). Note data the time window of an epoch is 1 s and its
length is N = fs = 256.
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structed EEG signal along with the reference signal. The duration of
an epoch is 1 s. Figs. 4(b-c) show that the three considered statis-
tical features are capable to detect the six considered artifacts. An
epoch is artifactual if cmse is low, skewness ðsÞ and kurtosis ðkÞ are
high. The first proposed FIS1 uses these features to decide if an
epoch is artifactual or not. Once an epoch is artifactual, the SWT
is applied on this epoch, then the use of the proposed FISs2 in
the second stage allows to detect the contaminated SWT coeffi-
cients. The universal threshold is used to denoise these coefficients.
Finally, the use of the inverse SWT allows to obtain the artifact-free
epoch. Fig. 4(e) shows that the proposed algorithm can signifi-
cantly detect and remove all different types of the six considered
artifacts. For more detail, Fig. 5 shows some artifactual epochs with
the six types of the considered artifacts. Each plot illustrates the
type of artifact with which an epoch is contaminated, the statistical
features of the artifactual EEG segment, the reference and recon-
structed EEG segments. These plots show that an artifact can be
present in more than one epoch. In addition, these illustrations
demonstrate that the proposed algorithm can significantly reduce
all different types of artifacts. The proposed algorithm is also eval-
uated quantitatively using several metrics (Section 4.2). As dis-
cussed in Section 4.2 these metrics allows to quantify the
obtained results in terms of artifact removal and its effect on the
neural activities (in term of distortion). Table 4 shows the quanti-
tative performance of the proposed algorithm.

4.3.2. Scenario 2
Fig. 6 illustrates the obtained results in the second scenario.

This figure shows the semi-simulated artifactual EEG signal, statis-
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tical features at different epochs, reference and reconstructed EEG
signals. It is obvious from these plots that artifacts are detected and
corrected. Table 4 shows the quantitative performance of the pro-
posed algorithm in the second scenario.
4.3.3. Scenario 3
In this scenario the proposed method is applied to fully real EEG

data. Figs. 7 shows the results obtained by the proposed method in
the case of EEG data from BCI competition dataset IV. This data are
contaminated with the ocular artifacts. It is clear from this figure
that the proposed method can detect and significantly reduce the
EEG artifacts.
4.4. Comparison of the proposed method with other methods

As discussed previously, the artifact removal from EEG sig-
nal is an active area of research since several methods have
been developed to remove the artifacts from the EEG signal
without much affecting the neural activity. Table 5 shows
the comparison between the proposed algorithm with some
artifact removal methods founded in the literature mainly
ICA-Th (independent component analysis-Thresholding), wICA
(wavelet ICA) (Castellanos and Makarov, 2006), wCCA (wavelet
canonical correlation analysis) (Mowla et al., 2015;
Raghavendra and Dutt, 2011), EMD-Th (empirical mode
decomposition-Thresholding), EMD-ICA (Mijović et al., 2010),
EMD-CCA (Chen et al., 2014), wPM (probability mapping-
wavelet) (Islam et al., 2021).



Fig. 5. EEG epochs contaminated with six different types of simulated artifacts that mimicking real artifacts in EEG recordings (Eye blink, cable movement, muscle artifact,
slowmovement artifact, EOG artifact, and electrode pop). These plots show also the statistical features of the corrupted EEG segment, the reference and the reconstructed EEG
segments.
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Table 4
The performance of the proposed algorithm in the first and the second scenarios.

Scenarios k ð%Þ DSNR ðdBÞ DRMSE ð%Þ DPSD ð%Þ DSNDR ðdBÞ DCor ð%Þ DCoh ð%Þ
Scenario 1 77.94 6.97 54.02 83.15 6.71 264.79 85.27
Scenario 2 67.93 5.43 44.86 �70.48 8.88 229.75 82.73

Fig. 6. Performance of the proposed method in the second scenario: contaminated EEG signal (a), statistical features of different epochs of the Contaminated EEG (b-d),
reconstructed along with the reference EEG signal.
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4.5. Discussion

The artifact handling is a real problem, especially with modern
applications of EEG signal in medical and BCI domains. In this
paper, we propose an automatic algorithm for detecting and
removing artifacts from EEG signal. This algorithm is able to per-
form for both single and multiple channels, does not need prior
information, does not need reference channel, is independent of
artifact types, and does not require any user parameter adjust-
ment. The presented results show that the proposed method is
very efficient in the three considered scenarios. The performance
comparison of this method with some of state-of-the-art artifact
removal methods shows (see Table 5):

� That the proposed method outperforms some existing ones
for artifact handling from single channel EEG signals
(EMD-Th, EMD-ICA, EMD-CCA and wPM), in scenario 1
and 2. While, comparing the performance of our algorithm
with multichannel artifact handling methods shows that
the proposed method performs better than wICA, and wCCA.
One can notice a slight difference in the performance
between our algorithm and ICA-Th. The proposed method
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can be then proposed as an efficient and robust method
for artifact handling especially in the case of single BCI
applications.

� In term of computational time, Table 5 shows that our algo-
rithm required more time than ICA-Th, wICA, wCCA and wPM.
But it is worth mentioning that the proposed algorithm process
the signal epoch by epoch. Then the time needs for this algo-
rithm to processes an epoch of EEG signal is about 0.16 s in
the first scenario and 0.11 s in the second scenario. This makes
the proposed method feasible to be implemented in an FPGA or
DSP chip to perform digital signal processing.

� The negative value means a negative change in the quality of
the EEG signal while the positive value means that there is an
improvement in the quality of the signal. In the first scenario
our algorithm provides an improvement in the quality of the
signal, e.g. in term of correlation, our method provides an
improvement of 264.79. However, in the second scenario the
proposed method brings a low deterioration in term of PSD
compared to ICA-Th, wICA, wCCA, EMD-Th, EMD-ICA, EMD-CCA.

� One of the main advantages of the proposed method is its high
value of kwhich means that this method can detect and remove
an important amount of artifacts.



Fig. 7. Performance evaluation of the proposed method in the case of fully real contaminated EEG data from BCI competition IV dataset: EEG signal contaminated with ocular
artifacts (a), statistical features of different EEG epochs (b-d), and reconstructed EEG data (e).

Table 5
The performance of the proposed method in the first and the second scenarios.

Scenarios Methods k ð%Þ DSNR ðdBÞ DRMSE ð%Þ DPSD ð%Þ DSNDR ðdBÞ DCor ð%Þ DCoh ð%Þ time (s)) No. Of channels

Scenario 1 ICA-Th 79.19 7.57 56.19 86.53 5.44 265.29 65.88 0.20 14
wICA 36.55 3.51 25.97 �95.50 3.44 145.10 62.15 0.42 14
wCCA 30.04 2.02 18.43 �41.77 2.62 99.50 31.20 0.38 14
EMD-Th 18.86 0.96 10.19 �251.04 3.21 58.05 52.15 324.01 1
EMD-ICA 74.75 6.99 52.60 82 5.74 222.30 63.58 382.97 1
EMD-CCA 36.02 2.13 20.87 �80.83 5.14 103.73 64.44 420.19 1
wPM �17.36 �0.63 �7.89 94.21 �0.92 �28.57 �68.80 1.55 1
Proposed 77.94 6.97 54.02 83.15 6.71 264.79 85.27 5.53 1

Scenario 2 ICA-Th 68.13 5.45 45.09 �144.13 0.66 229.21 58.50 0.22 15
wICA 35.40 2.89 23.63 �167.46 1.84 144.53 48.31 0.42 15
wCCA 8.51 0.74 6.26 - 475.35 0.86 60.17 8.91 0.35 15
EMD-Th 10.57 0.66 6.31 �2835.7 3.58 66.51 54.72 849.12 1
EMD-ICA 54.84 4.37 36.04 �188.70 3.32 227.91 69.13 860.43 1
EMD-CCA �28.77 �1.05 �13.50 �739.65 6.78 �88.39 �14.74 918.02 1
wPM 4.56 0.27 2.66 92.67 7.81 33.62 44.88 1.31 1
Proposed 67.93 5.43 44.86 �70.48 8.88 229.75 82.73 3.74 1
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� In term of stability, our method provides the same result from
one run to another, however the performance and the computa-
tional time of ICA, EMD and other related methods are not
stable. In addition, EMD, EMD-ICA and EMD-CCA can not per-
form on different kinds of data.

Despite the potential advantages of the proposed approach,
there may be one major limitation that could be addressed in the
future work. The complexity of the proposed method increases
9439
linearly with number of EEG channels due to the increase number
of the stationary wavelet filters. It is then necessary to attempt to
reduce the complexity of the proposed algorithm in term of wave-
let filters in the case of a large number of EEG channels. In addition,
there are some limitations of this study. We expect to test the pro-
posed algorithm with more EEG data from different paradigms
from different users in order to tune properly different parameters
of our algorithm, namely the parameters of the fuzzy logic system
and duration of an incoming EEG segment.
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5. Conclusions

The artifacts are a serious problem in the medical field and BCI
applications of the EEG signal. They are added to the neural activ-
ities and changed its morphology: 1) in the medical field, they lead
to misinterpretation of the EEG signal. This can conduct to treat
incorrectly the patients; and 2) in BCI applications, they cause
unintentional control of devises. Several artifacts handling meth-
ods have been developed based on different advanced signal pro-
cessing, machine learning and deep learning techniques.
However, until the moment of writing of these lines, there is no
an efficient method that allows to resolve completely the problem
of EEG artifacts. This paper was concerned with artifact handling
from EEG signals. An automatic algorithm for detecting and remov-
ing of artifacts from EEG signal was proposed. This algorithm was
assessed in three scenarios: fully simulated artifactual EEG, semi-
simulated artifactual EEG and fully real artifactual EEG recordings.
The results obtained in these three scenarios show the superior
efficacy of the proposed algorithm. This method was tested both
in term of artifact removal and signal distortion. A comparative
study was conducted between the performance of our algorithm
and some widely known artifact removal methods. This compar-
ison showed that the proposed method performs better than all
the considered artifact removal methods from single channel EEG
recording (i.e. wPM, EMD-Th, EMD-ICA and EMD-CCA) and also
some artifact removal methods from multichannel EEG recordings
(i.e. wICA and wCCA). However, a slight difference between the
proposed method and ICA-Th was mentioned. The comparison of
different methods in term of computational time proved that the
proposed algorithm can achieve a high performance in an
acceptable time. The necessary time to handle one second of data
by our method is 0.16 s in the first scenario and 0.11 s in the
second one. The proposed method can be useful to improve the
quality of the EEG signal, especially in the new applications of
BCI systems (i.g. neural prostheses) and also in the medical domain
(i.g. health care monitoring), since this method can be
implemented either for offline or online EEG artifact removal, with
single channel or multi-channel EEG recording. This research is
worth continuing further in order to improve and increase the
EEG signal to noise ratio and overcome the limitations. Further
work will focus on: 1) reduce the model complexity in the case
of a large number of EEG recording channels; and 2) assessing
the proposed approach with EEG data from different users and
paradigms.
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