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Contamination of electroencephalogram (EEG) signals due to natural blinking electrooculogram (EOG)
signals is often removed to enhance the quality of EEG signals. This paper discusses the possibility of
using solely involuntary blinking signals for human authentication. The EEG data of 46 subjects were
recorded while the subject was looking at a sequence of different pictures. During the experiment, the
subject was not focused on any kind of blinking task. Having the blink EOG signals separated from
EEG, 25 features were extracted and the data were preprocessed in order to handle the corrupt or missing
values. Since spontaneous and voluntary blinks have different characteristics in terms of kinematic vari-
ables and because the previous studies’ control setup may have altered the type of blink from sponta-
neous to voluntary, a series of statistical analysis was carried out in order to inspect the changes in
the multivariate probability distribution of data compared to the previous studies. Statistical significance
shows that it is very likely that the blink features of both voluntary and involuntary blink signal are gen-
erated by Gaussian probability density function, although different than voluntary blink, spontaneous
blink is not well discriminated with Gaussian. Despite testing several models, none managed to classify
the data using only the information of a single spontaneous blink. Thereby, we examined the possibility
of learning the patterns of a series of blinks using Gated Recurrent Unit (GRU). Our results show that indi-
viduals can be distinguished with up to 98.7% accuracy using only a reasonably short sequence of invol-
untary blinking signals.
� 2020 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since biometrics offers a much secure and feasible way for
human authentication, they have been utilized widely in recent
years. Due to the fact that biometrics like fingerprint, facial fea-
tures, voice and iris are exposed to the external world, they can
be spoofed and reused, which makes them vulnerable [19,13].

Numerous studies proposed using EEG-based authentication,
for unlike the other biometrics, it is not directly exposed to the
external world and is less likely to be scammed and regenerated
[4]. First time in 1999, Poulos et al. introduced EEG-based individ-
ual authentication, achieving 72% to 84% correctly recognized
instances [23]. Using EEG signals, Pham et al. was able to classify
gender and age of subjects with an accuracy of 97% and 91%,
respectively [22]. Ashby and colleagues investigated on low-cost
EEG individual authentication during a mental imagery task [6].
Using support vector machine (SVM), they achieved a classification
accuracy of 97.6%.

Recently, the use of blinking EOG signals has been considered
by researchers in applications including bioemtrics and communi-
cations [26–29]. Abo-Zahhad et al. designed an experiment in
which 25 subjects were asked to make 10 blinks during eight ses-
sions and EEG signals were recorded using a single electrode device
[3]. Using a Gaussian classifier on the 23 extracted features from
blink data, they found that blinking EOG signals have unique pat-
terns for each individual and thus, was able to distinguish between
subjects with a precision of 97% [24]. In another work [4] con-
ducted by the same authors, a multi-level hybrid authentication
system was proposed which utilize both fusion of EEG and EOG
signals. The use of Linear Discrimination Analysis (LDA) allowed
the authors to increase the classification accuracy by 6% achieving
a maximum accuracy of 97% in the process. Although the results
are promising, we question the possibility of the results being
impacted by the experimental setup (where the subjects were
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asked to blink voluntarily) since, the kinematic variables of volun-
tary and spontaneous blinking are quite different [9,20]. Moreover,
low number of subjects might have influenced the classification
results. Inspired by Abo-Zahhad and his colleagues, Wu et al. [25]
conducted a study to develop a multi-task authentication system.
Combining EEG and spontaneous EOG signals with face rapid serial
visual presentation (RSVP), they were able to achieve an average
accuracy of 97.6%.

Unlike the previous studies in which voluntary blinking or a
mixture of EEG and involuntary EOG signals were used, here we
investigate the feasibility of using only spontaneous blinking (nat-
ural blinking) signals [4,3,25]. Furthermore, putting no constraints
on subjects’ natural blinking function and gathering signals during
a variety of random emotions, we tackle the existing difficulty of
classifying imbalanced, dependent and not identically distributed
random variables which has been eliminated or diminished in
other studies. We also study the nature of spontaneous blinking
signal in terms of the probability density function and the distin-
guishability of its attributes in the feature space. The main contri-
bution of this work is to investigate the natural eye blinking
activities as a mean to identify individuals with quite a reasonable
accuracy.
Fig. 1. Simple process flow of the whole method used in this research.
2. Materials and methods

2.1. EEG data acquisition

EEG data were recorded using Emotiv EPOC, a 14-channel wire-
less headset [1] with sampling frequency of 128 Hz, to create two
distinct datasets for two different experimental setups: 1) subject
watching a video clip [21] and 2) subject is asked to like or com-
ment to a series of images shown on a computer screen. The wet
electrode Emotiv EPOC has 16 channels located at positions AF3,
F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4 with P3
and P4 as the two reference channels, arranged following the stan-
dard international 10–20 system. However, it is important to men-
tion that although the EEG recorder has 14 channels, the data of
only one channel (fp1) were used for extracting the blinking data,
statistical analysis and classification task.

In the first experimental setup, each subject was seated in front
of a computer monitor to watch a synthetic video clip of 6 min 43 s
long comprised of three different categories of small movie clips
that can arise three different emotions in the subject. The video
clip and the overall experiment procedure is the same as that of
[21].

For the second experiment, We downloaded 150 advertise-
ments (images) from Google by searching with keywords like ad
(s), advertisement(s), popular ads, etc. Then we filtered out 30
images as per the following criteria: a)10 images which will be
more prone to be liked by females (cosmetics, women’s shoes,
skin/hair care products, etc.); b) 10 images which will be more
prone to be liked by males (cars, cigarettes, speakers, men’s shoes,
etc.) and c) the remaining 10 ads which was gender independent
(food, chocolates, mobile phones, tourism, etc.).

The images may have stimulated a range of emotions in partic-
ipants, simulating the variety of ordinary emotions an individual
may experience in his daily life and can affect the blink’s properties
[7,11]. The task was easy to do and did not require a high level of
concentration. For each of the 30 images, subjects had only two
options: either they could hit the ‘‘Like” or the ‘‘Next” button. If
after hitting the ‘‘Like” button someone wished to undo it, they
could do that via clicking the ‘‘Like” button again before moving
onto the next image. Once they moved onto to the next image, they
could not return back to previous image. The whole experimental
procedure took about 10 min from device setup to stimulus
presentation. A 21.5-inch LED monitor with a refresh rate of
60 Hz was used for this purpose. We collected EEG data, video
recording of the participant using a web-cam and video recording
of the screen.

Prior to the study, subjects signed informed consent forms only
after reading and agreeing to it. The minimum, maximum, stan-
dard deviation and mean age of the subjects were 19, 28, 1.80
and 22.10 respectively.

The whole process flow of the method used in this work has
been illustrated in 1.
2.2. Preprocessing and feature extraction

BLINKER, a freely available MATLAB toolbox, has been used to
extract the eye blink signals from recorded EEG signals [16].
Although we had 14-channels of EEG recordings from EMOTIV,
we used only AF3 (equivalent to Fp1 electrode of Neurosky) chan-
nel’s EEG sequence as input to BLINKER to extract eye blinks since
AF3 (or Fp1 of Neurosky) electrode position is the closest to eye for
potential blink detection. In addition, another purpose of using
only AF3 channel is the fact that, we only need a single channel
EOG recording for human authentication, not necessarily it has to
be EEG recording, it could simply be an EOG recorder. This choice
would also help us to compare with other existing studies who
used a single-channel EEG recorder such as Neurosky (Fp1).

This subsection describes the process how the plugin BLINKER
works. This algorithm takes any time-series EEG data as input, irre-
spective of whether preprocessed or not, whether single or multi-
channel, and whether with reference EOG channel or not. Thus,
regardless of input signal type, it uses the same technique for ini-
tial blink detection and calculation of preliminary blink parameters
such as blink start and end times. The input sequence is band-pass
filtered between 1 and 20 Hz prior to blink detection. Then the
algorithm determines the intervals during which the signal is more
than 1.5 times the standard deviation above the overall mean
(> 1:5std + mean). It only considers the potential blinks that are
longer than 50 ms and at least 50 ms apart from each other. This
algorithm is able to eliminate many small eye movements without
eliminating many actual eye blinks. The major blink features that
can be extracted using this toolbox are blink rate, blink duration,
maximum and minimum amplitudes of blinks, and velocity mea-
sures. The process flow of the blink extraction is shown in 2.

Our final cohort consists of nearly 2000 blink instances of 46
subjects. Number of instances for each participant is different,
forming an imbalanced dataset. This number varies between 17
up to 162 blinks depending on subject. For each blink 25 features,
based on the proposed blink properties by Kleifges et al. [16], were
extracted with the purpose of investigating on the discriminative
information of original blink signal. Among these features, the
amplitude of positive and negative blink signal and their deriva-
tives (posAmpVelRatioBase, PeakMaxTent and PeakMaxBlink),
duration of positive and negative pulse (durationBase, dura-
tionZero and durationTent), position of positive and negative peak
from onset of positive and negative pulse (durationHalfBase, dura-
tionHalfZero and durationHalfBase), have the same definitions as
in [3]. Fig. 3 shows an example of blink EOG signal and some of
its attributes. Missing values is a common phenomenon in real
world problems. The K-Nearest Neighbors Imputation (KNNI) [5]



Fig. 2. Process flow of the BLINKER tool to extract eye blinks from EEG time series
(adopted from [16]).

Fig. 3. An example of extracted blink signal and some of its features.
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with Euclidean distance function was applied to handle the miss-
ing values. Using this method, the missing data of each blink are
imputed by considering K nearest instances which are most similar
to the instance of interest. In order to select a subset of features
that carries the most relevant information and centralizing the sta-
tistical analysis on variables which matter the most, the Random
Forest [10] algorithm was used. As illustrated in Fig. 3, the three
most important subset of features are: the maximum amplitude
of the blink, length of the interval in seconds between successive
blink peaks and maximum height of the tent peak.

In the next section, the aptitude of Gaussian classifier for classi-
fying spontaneous blink signal, as it was proposed in [3], is inves-
tigated. Afterward, several models were examined aiming to find
the best one for classifying the data using the information carried
by a single blink signal. Finally, the use of information in arbitrarily
sequences of blinks for human recognition is examined.

2.3. Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) [12] is an extension of traditional
Recurrent Neural Networks (RNNs) which aims to solve the vanish-
ing gradient problem and is capable of handling variable-length
sequence as input by having a recurrent hidden state. Let’s con-
sider a vector of blinks X ¼ X1;X2;X3; . . . ;Xtð Þ. Given this series of

blinks, the GRU updates the recurrent hidden state hj
t by

hj
t ¼ 1� zjt

� �
hj
t�1 þ zjth

�
j
t þ bh ð1Þ

where hj
t , h

j
t�1 and h

�
j
t , are the activation of GRU at time t, the previ-

ous and candidate activation, respectively. The update gate zjt deci-
des how much the unit should be updated which is computed by

zjt ¼ r WzXt þ Uzht�1 þ bzð Þj ð2Þ
where W , U are parameter matrices and r is the logistic sigmoid
function. The candidate activation is computed by

h
�
j
t ¼ tanh WXt þ U rt�ht�1ð Þð Þj ð3Þ

where rt is a group of rest gates and � is element-wise operation.
Parameters Parameter bh and bz are bias vectors. The choice of
GRU is based on the fact that in comparison with Long-short Term
Memory unit (LSTM) [14] it needs less parameters and its advan-
tage over RNNs in terms of faster convergence and having better
solutions [12]. One the other hand, GRU RNN is similar to the LSTM
RNN, although with less external gating signal in the Eq. (1).
Assume that the cell state is n-dimensional and the input signal is
m-dimensional. The total parameters in LSTM RNN are equal to
4� n2 þ nmþ n

� �
while the number of parameters for GRU RNN

is equal to 3� n2 þ nmþ n
� �

. This means that GRU needs less
parameters in comparison with LSTM.

Several different architectures of GRU have been proposed to
reduce the number of the parameters even more [30]. These archi-
tectures basically retain the architecture of Eq. (1) and focus on
variation in the structure of the gating signals in Eq. (2). In the first
variant called GRU1 each gate is computed using only the previous
bias and hidden state.

zjt ¼ r Uzht�1 þ bzð Þj ð4Þ
This way, the number of parameters is reduced by 2� nm.
In the second variant, GRU2, the gate is computed using only

the previous hidden state which reduces the parameters of GRU
by 2� nmþ nð Þ.

zjt ¼ r Uzht�1ð Þj ð5Þ
The third variant, which has the least number of parameters,

uses only bias and reduces the parameters by 2� nmþ n2
� �

.

zjt ¼ r bzð Þj ð6Þ
Rahul et al. [30] analyzed the performance of these variants in

comparison with the original GRU and reported that the first and
second variants perform almost as good as original GRU while
the third variant lags in performance. Since in this work the main
goal is to achieve the best possible performance, the original GRU is
used to measure the accuracy of the model.

2.4. Potential use of Gaussian classifier

We survey the adequacy of Gaussian classifier for classifying
single involuntary blink signal by analyzing the multivariate distri-
bution of features used both in [3] and the current study. As men-
tioned above, the most important features are the duration of
positive pulse, the amplitude of positive peak of first derivative,
amplitude of negative peak of first derivative and the position of
positive peak from the onset of positive pulse (see Fig. 4). Thereby,
we show the statistical results only for these features, although,
the results are valid for other variables as well. By showing that
all the features are generated by a Gaussian density function, we
conclude that both voluntary and spontaneous blinking signal are
generated by multivariate Gaussian density function. The distribu-
tion of each variable was extracted for each individual and was
compared to the others in terms of the type of distribution, mean
and variance. As illustrated in Fig. 5, Gaussian distribution is the
best fit for the amplitude of positive peak as one of the most impor-
tant features.

In order to quantify the distance between empirical and the
cumulative distribution function of Gaussian as the reference dis-
tribution and to decide about the goodness of its fit, the
Kolmogorov-Smirnov test [17] was constructed by using the



Fig. 4. Variable importance.
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critical value associated with a significance level a ¼ 0:05. As
shown in Tables 1, the probability associated with the critical value
Ka of multivariate distribution of empirical data being generated
by Gaussian distribution is not significant, resulting in the rejection
of the null hypothesis. Considering the p-value of Kolmogorov-
Smirnov test for all the features across all the subjects, we confirm
that the generative function of blinking data follows a Gaussian
density function. Here we discuss the possibility of using Gaussian
classifier for human authentication as it was proposed in [3] for
voluntary blinking. Let f 1 xð Þ; f 2 xð Þ; . . . ; f n xð Þ be the probability den-
sity function associated with p� 1 vector random variables X for
populations pi populations. Each instance i must be assigned to
Fig. 5. The Q-Q plot of the amplitude of positive peak of six ran
one of the pn. Let Rn be the n th critical regions where the instance
is assigned to. Having highly overlapped regions among pn popula-
tions, as it is observable in Fig. 6, causes a high error rate in classi-
fication of instances using Gaussian classifier. This result is valid
for all the 25 existing variables in dataset of spontaneous blinks’
signal. This shows that although the signal of both voluntary and
spontaneous blinking is generated by a Gaussian function, consid-
ering the high classification rate achieved in [3], we may conclude
that for involuntary blinking, the distribution of data is not as sep-
arable as it is for voluntary blinking. Therefore, other models ought
to be examined in order to find the best classifier.
3. Results and discussion

Each instance of a blinking signal was labeled with a unique ID
representing the individuals. These labels were then considered as
the class of each blink and were used in classification task to iden-
tify each subject using the extracted features from each signal. Sev-
eral algorithms from a variety of classification approaches
including kernel methods, tree, distance-based and Bayesian mod-
els were tested and the accuracy of each one were compared to the
others. For all the classifiers cross-validation with 10 folds was
used. K-Nearest Neighbors, as a distance-based algorithm, with
K ¼ 9, leaf size of 30 along with Euclidean distance measure had
the worst accuracy with 28%. The best result, on the other hand,
was achieved by Multilayer Perceptron with 42.4%, having learning
rate set to 0.001, momentum for gradient descent update equal to
0.9 and 500 iterations. Random Forest, as a tree model, with gini
criterion, maximum depth of 4 and 8 trees per forest has classifica-
tion accuracy of 29%. Support Vector Machine (SVM) with linear
domly selected subjects for the amplitude of positive peak.



Table 1
The Kolmogorov-Smirnov test results of 6 randomly chosen subjects for the duration
of positive pulse (top left), amplitude of positive peak of first derivative (top right),
amplitude of negative peak of first derivative (bottom left) and the position of positive
peak from the oneset of positive pulse (bottom right).

Dn;a p-value

1 0.14913 0.1515
2 0.12363 0.6238
3 0.10247 0.4452
4 0.20151 0.1075
5 0.13532 0.7717
6 0.076773 0.8901

1 0.18052 0.399
2 0.074364 0.9772
3 0.063843 0.9165
4 0.21212 0.06707
5 0.089928 0.9804
6 0.078665 0.8449

1 0.108 0.4753
2 0.16047 0.2667
3 0.10615 0.3741
4 0.17544 0.1934
5 0.083467 0.991
6 0.11116 0.4496

1 0.10021 0.5705
2 0.13378 0.4811
3 0.083546 0.6733
4 0.085402 0.9353
5 0.11412 0.8788
6 0.10067 0.5754
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kernel and tolerance factor equal to 0.001 had the second best
result with 42.2% accuracy. Finally, Gaussian classifier and Linear
Discrimination Analysis achieved 37% and 35% classification rate
respectively. Since, the number of participants were different in
the previous researches, we analyzed the results with different
Fig. 6. The distribution of four most important f
number of subjects in order to find its impact on accuracy. Depend-
ing on the model, it was observed that an increase of number of
subjects from 31 (number of subjects participated in [4]) to 46
can decrease the classification rate up to 40%. More specifically,
for LDA and Gaussian classifier suggested by Abo-Zahhad et al.
[3], we observed a decrease of accuracy by 28% and 20% respec-
tively. As depicted in Fig. 7 none of the tested models manages
to distinguish individuals using the information of a single sponta-
neous blink with high accuracy. Since, this study has almost half of
the same features as that of [3,25], using their models for voluntary
blinking reduces the likelihood of having a similar high accuracy
for our spontaneous involuntary blinking dataset or for a mixture
of EEG and EOG signals. Nevertheless, since no feature score was
reported in [3], there is a possibility that the most relevant variable
subset reported in the current study has less importance in [3,25]
thus, making it necessary to carry out further investigations in
terms of the sequence of blinks. To do so, the individuals’ blinking
data were ordered sequentially and then were fed to the GRU. For
optimizing the model we trained it for a maximum of 256 epochs
using the Adam optimizer [15] with a learning rate of 0.00005 and
the training is stopped if the validation loss does not decrease for
two consecutive epochs. The dropout probability was set to be
equal to 0.5. The batch size and embedding dimension were both
set to 64. The dataset was split randomly, 70% into the training
set and 30% into the test set. A sliding window with different sizes
was used to create sequential instances of a series of blinks and
then each series related to each individual was labeled with a
unique ID. The classification task is then identifying the individual
(which is represented with a unique ID) using the predicted ID for a
sequence of blinks. A sequence of 2,4,6 and 8 blinks (2b, 4b, 6b, 8b)
with 1 to 3 hidden layers (1 l-3 l) was tested. As it is illustrated in
Fig. 8, as the number of hidden layers and blinks in a sequence are
increased, the classification rate becomes more accurate and the
median rate gets closer to the third quartile. When number of hid-
eatures for ten randomly selected subjects.



Fig. 7. Boxplot of classification accuracy of six different classifiers.
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den layers is set to 4 or more layers, the improvement in classifica-
tion rate is not significant. Since the classes are not completely bal-
anced, accuracy, micro-average of precision and recall were used to
evaluate the performance of the classifier.

Microprecision ¼
Xn

i

TPi

TPi þ FPi
ð7Þ

Micro recall ¼
Xn

i

TPi

TPi þ FNi
ð8Þ
Fig. 8. Boxplot of classification accuracy of GRU with variation in nu

Fig. 9. The impact of features and their values on prediction accuracy. The index
Accuracy ¼
Xn

i

TPi þ TNi

TPi þ TNi þ FNi þ FPi
ð9Þ

where: TP = True positive; FP = False positive; TN = True negative
and FN = False negative. The results show that a sequence of 8
blinks carries enough information for each individual to be classi-
fied with 98.7% accuracy, 97.5% micro average precision and 97%
micro average recall. A series of 7 and 6 blinks on the other hand,
are classified with 96.1% and 97.8% accuracy, 97.5% and 95.2% pre-
cision, and 96.8% and 94.1% recall, respectively.

Confidence interval can be presented in order to estimate the
reliability of the results as follows:

zr ¼ error � const �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
error � error � 1ð Þ=nð Þ

p
ð10Þ

where r is the standard deviation and const is the confidence level.
By setting the confidence level to 1.96, there is a 95% likelihood that
the true classification error is 0:018� 0.006 for the unseen
population.

The interpretation of the model is done based on the unified
approach suggested by [18]. As shown in Fig. 9 (left) the length
of the interval between successive blink peaks, maximum ampli-
tude of the blink and maximum height of the tent peak are the
most relevant features in the current model and the features of
the first four blinks of each sequence have the most contribution
in increasing the classification rate. Nevertheless, for this model,
mber of hidden layers and number of blinks in each sequence.

of each feature is related to the blink position in the sequence of instances.



Table 2
A comparison between the current work and the previous studies.

Author Data Type Number
of subjects

ACC
(%)

Abo-Zahhad et al. [3] Voluntary blinking signal 25 97
Abo-Zahhad et al. [4] Voluntary blinking signal, EEG

gathered from a single channel
31 98.6

Abo-Zahhad et al. [2] Voluntary blinking signal 40 93.7
Wu et al. [25] Spontaneous blinking signal, EEG

gathered from 16 channels
40 97.6

The current study Only spontaneous blinking signal 46 98.7
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as illustrated in Fig. 9 (right), the difference between the contribu-
tion of the most and less relevant features previously determined
by Random Forest is not significant. Also, for all the features both
negative and positive values result in a higher prediction yet, the
impact of each of these values depends on each class.

Table 2 provides a comparison of our results against the base-
line approaches. Since the previous studies used accuracy as a
measure of performance, we use the same measure in our compar-
ison. In comparison with the previous studies our method outper-
forms in terms of classification performance. Our method achieved
a better accuracy in comparison with [4], although it is important
to mention that the dataset used by Abo-Zahhad et al. [3] contains
both EEG and EOG signals and the results were verified with signif-
icantly lesser number of subjects compared to the this work. Our
method has also better accuracy compared to the other studies
conducted by Abo-Zahhad et al. [3,2]. In these works only EOG sig-
nals were used although, the data acquired in the current study is
related to spontaneous blinking and the experiment puts no
restriction over the blinking task neither the quality nor the total
number of blinks. Considering the number of individuals partici-
pated in [25], Wu et al. achieved a promising classification rate,
however spontaneous blink signals along with EEG data were used
in their work. On the contrary, our method achieved better accu-
racy just using EOG signals. Furthermore, they used 1500 data
samples for each subject in the training phase while in our study
an average of 50 samples (per subject) were fed to GRU for train-
ing. In terms of time cost, the method proposed by Wu et al. [25]
performs better than our approach however, the authentication
time is highly dependent on the experimental setup. On average,
in our experiment subjects blinked 12.5 times per minute. This
low blink rate may have been caused by the visual task performed
by individuals during the data acquisition [8]. Hence, further
experiments ought to be done in other conditions such as rest
and conversation [8] so as to find the time cost of the current
method during the other tasks where blinking rate is higher (an
average of 25–30 blinks per minute). One may question the feasi-
bility of using a sequence of blinks for user authentication in daily
tasks such as having access to a computer, cellphone, etc. Here, the
possible application of this method, considering our emphasis on
using spontaneous blinking, involves continuous and long term
individual authentication when he/she stays in a specific area (air-
port, restricted areas or even in a city). Also, it is worth mentioning
that only the first authentication may take a longer time and once
the user is identified the next authentication needs only a single
blink.
4. Conclusion

In this paper, we investigated the use of spontaneous blink sig-
nal for human recognition. Data of 46 subjects were recorded dur-
ing a picture visualization task. After preprocessing the data, 25
features were extracted. In the next step, the distribution of vari-
ables was analyzed to examine whether the generator function is
the same for spontaneous and voluntary blinking. It was found that
features are not distributed identically. Several models were tested
with the purpose of finding the best classifier however, none man-
aged to distinguish individuals with high accuracy. Thereby, the
possibility of using a sequence model for human authentication
was investigated and several sequences were tested. Although
the best accuracy (98.7%) was achieved by feeding the information
carried by a series of 8 blinks to Gated Recurrent Unit Neural Net-
work, our method is capable of using even lesser number of blinks
for accurate human authentication. For future works, the proposed
method should be replicated during other tasks such as reading,
rest and conversation.
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