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Summary Electroencephalography (EEG) is the most popular brain activity recording tech-
nique used in wide range of applications. One of the commonly faced problems in EEG recordings
is the presence of artifacts that come from sources other than brain and contaminate the
acquired signals significantly. Therefore, much research over the past 15 years has focused on
identifying ways for handling such artifacts in the preprocessing stage. However, this is still an
active area of research as no single existing artifact detection/removal method is complete
or universal. This article presents an extensive review of the existing state-of-the-art artifact
detection and removal methods from scalp EEG for all potential EEG-based applications and
analyses the pros and cons of each method. First, a general overview of the different artifact
types that are found in scalp EEG and their effect on particular applications are presented.
In addition, the methods are compared based on their ability to remove certain types of arti-
facts and their suitability in relevant applications (only functional comparison is provided not
performance evaluation of methods). Finally, the future direction and expected challenges of
current research is discussed. Therefore, this review is expected to be helpful for interested
researchers who will develop and/or apply artifact handling algorithm/technique in future for
their applications as well as for those willing to improve the existing algorithms or propose a
new solution in this particular area of research.
© 2016 Elsevier Masson SAS. All rights reserved.

∗ Corresponding author.
E-mail address: rastegar@tabrizu.ac.ir (A. Rastegarnia).

http://dx.doi.org/10.1016/j.neucli.2016.07.002
0987-7053/© 2016 Elsevier Masson SAS. All rights reserved.
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Résumé L’électroencéphalographie (EEG) est une technique d’exploration du cerveau très
utilisée dans une large gamme d’applications. L’un des problèmes couramment rencontrés
dans les enregistrements EEG est la présence d’artefacts qui viennent de sources autres que
l’activité cérébrale et contaminent significativement les signaux acquis. En conséquence, de
nombreux travaux de recherche ont été effectués depuis les années 2000 pour identifier les
moyens d’éliminer ces artefacts dans une étape de prétraitement du signal. Ceci est toujours
l’objet de recherches actives, car aucune méthode existante de détection et rejet d’artefacts
n’est parfaite et n’a pu faire l’objet d’un consensus. Cet article présente une revue détaillée et
un état de l’art concernant les méthodes de détection et rejet d’artefacts à partir des enreg-
istrements EEG de scalp pour toutes les applications potentielles basées sur l’EEG et analyse les
avantages et les inconvénients de chaque méthode. Tout d’abord, un aperçu général des dif-
férents types d’artefacts qui peuvent s’observer dans l’EEG de scalp et leur impact en fonction
d’applications particulières sont présentées. Puis, les méthodes sont comparées en fonction de
leur capacité à éliminer certains types d’artefacts et de leur valeur dans les différentes appli-
cations pertinentes (seule une comparaison « fonctionnelle » est présentée et non l’évaluation
de la performance de ces méthodes). Enfin, les orientations futures et les défis des recherches
actuelles sont discutées. Cette revue devrait être utile pour les chercheurs intéressés à dévelop-
per et/ou à appliquer des algorithmes ou techniques de manipulation d’artefacts EEG dans leurs
travaux futurs, ainsi que pour ceux qui souhaitent améliorer les algorithmes existants ou de
proposer de nouvelles solutions dans ce domaine de recherche spécifique.
© 2016 Elsevier Masson SAS. Tous droits réservés.

Introduction

Electroencephalography (EEG) is a non-invasive recording
technique that measures the electrical activity of brain
by placing electrodes on the scalp [65]. Due to its non-
invasiveness and cost-benefit ratio, EEG has been the most
preferred method of brain recording in clinical studies, lab
experiments, patient health monitoring [36], diagnosis and
many other applications. Unfortunately, EEG recordings are
often contaminated by different forms of artifacts, such as
artifacts due to electrode displacement, motion artifacts,
ocular artifacts and EMG artifacts from muscle activity.
These offending artifacts not only misinterpret the underly-
ing neural information processing but may also themselves
be difficult to identify. For example, during patient mon-
itoring in a critical care unit or during epilepsy seizure
detection, artifacts may increase the chance of false alarms
[26,84]. Another example is during brain-computer interface
(BCI) applications, where artifacts can modify or alter the
shape of a neurological event (e.g. event-related potential
or ERP) that drives the BCI system and that eventually results
in an unintentional control of the device [100]. The same
problem may occur during sleep study [82] and diagnosis
of other neurological disorders such as Alzheimer’s disease
(AD) [13], schizophrenia [95], etc. Therefore, artifact detec-
tion and removal is one of the most important preprocessing
steps for neural information processing applications.

The variety of artifacts and their overlap with signals of
interest in both spectral and temporal domains, even some-
times in the spatial domain, makes it difficult for simple
signal preprocessing technique to identify them from EEG.
Therefore, the use of simple filtering or amplitude thresh-
olds to remove artifacts often results in poor performance
both in terms of signal distortion and artifact removal. So far,
a large number of methods/algorithms have been developed
for artifact detection and removal from EEG signals. How-
ever, as we will discuss in this paper, there is no universal

complete solution yet available for this particular problem.
More specifically, a careful review of the relevant artifact
detection removal algorithms/methods reveals that there is
a gap between designed algorithm and its target application.
Most of the available techniques are not application-specific
and therefore unnecessary computational burden arises.

Considering this issue, this paper aims to provide a com-
prehensive survey on the existing state-of-the-art artifact
detection and removal methods from scalp EEG for all poten-
tial EEG-based applications. It is worthy to note that this
research deals with artifacts and their handling methods
found only in scalp EEG recordings, not stimulation arti-
facts or artifacts found in simultaneous EEG-fMRI recordings.
There are several useful algorithms proposed in the litera-
ture to remove artifacts from such EEG-fMRI signals, such as
[2,3,25]. Interested researchers can take a look at these ref-
erences for more information. In addition, since currently
there is no universal standard quantitative metric avail-
able for performance evaluation of existing artifact removal
methods,1 this paper does not report such performance eval-
uation, but rather provides only the functional comparison
between methods.

To this end, first we briefly introduce typical artifact
types that are found in scalp EEG. Then, we provide a com-
parative analysis of the existing methods/algorithms with
their advantages, limitations and application-specific chal-
lenges. Finally, the future direction is discussed to provide
application-specific solutions with reasonable complexity,
optimized performance and most importantly with feasible

1 There are a couple of articles [39,52] that proposed to use sim-
ulated EEG data for performance evaluation of any artifact removal
method in a quantitative manner. Interested readers who wish to
explore the quantitative performance evaluation technique of any
artifact removal method are requested to consult the mentioned
articles for more details.
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solutions. We believe that this review paper can help
researchers to choose the most suitable artifact handling
method for a particular EEG-based application. Moreover,
it would also be useful for those researchers interested
in designing and implementing new methods/algorithms to
handle artifacts in a more efficient way, keeping in mind the
particular application.

A list of symbols and notations commonly used in this
paper is shown in Table 1.

The rest of this paper is organized as follows. Section
‘‘EEG and artifact characterization’’ introduces typical EEG
and artifact characteristics. Section ‘‘Existing artifact hand-
ling methods’’ briefly describes the mechanism of all the
existing methods for artifact detection and removal. Section
‘‘Comparison between methods’’ provides a comparative
analysis between the methods and their suitability for differ-
ent applications. Section ‘‘Discussion’’ discusses the current
status of artifact handling software plug-ins and also pro-
vides future directions of this research. Finally, section
‘‘Conclusions’’ gives concluding remarks.

EEG and artifact characterization

EEG characteristics

EEG is the recording of the electrical activities from sur-
face/scalp of the brain and typically described in terms
of rhythms and transients. The rhythmic activity of EEG is
divided into bands of frequency. Although the common EEG
rhythms are delta, theta, alpha and beta waves, however,
recently the gamma wave comes into EEG analysis in cer-
tain cases. Moreover, mu wave is also considered as a variant
because of lack of association with dysfunction or diseases.
The corresponding frequency bands of these waves are given
in Table 2.

Artifacts

EEG recordings are often contaminated by different forms
of artifacts. The artifacts in EEG recording are of various
types that come from different sources. In broad sense, arti-
facts in EEG can be originated from internal and external
sources and contaminate the recordings in both temporal
and spectral domains with wide frequency band. Internal
source of artifacts are due to physiological activities of
the subject (e.g. ECG, EMG/muscle artifacts, EOG) and its
movement. External source of artifacts are environmental
interferences, recording equipment, electrode pop-up and
cable movement. Also some artifacts may present in sev-
eral neighboring channels (global) while some of them can
be found only in single-channel (local). In addition, some
artifacts appear as regular periodic events such as ECG or
pulse artifacts (regular/periodic) while some others may be
extremely irregular. An example of artifact-contamination
is illustrated in Fig. 1.

A summary of different artifact types and their origins is
provided in Table 3.

Table 1 Description of notations. Q9

Symbol Description

TVD Total variation de-noising
EIH Energy interval histogram
EAS Ensemble average subtraction
PWC-PSVM Probabilistic SVM with pairwise coupling
APF Adaptive predictor filter
OPTIMI Online predictive tools for intervention in

mental illness
RBF-ANN Radial basic function based artificial neural

network
FORCe Fully online and automated artifact

removal for BCI
SFA Signal fraction analysis
GSVD Generalized singular value decomposition
EDS Exponentially damped sinusoidal
RMVB Robust minimum variance beamforming
STF-TS Space-time-frequency time/segment
GMDH Group method of data handling
PNN Polynomial neural network
DTT Decision tree technique
ARX Auto-regressive exogenous
WNN Wavelet neural network
CSPA Component subspace projection algorithm
SR Spectral ratio
FLN-RBFN Functional link neural network with

adaptive radial basis function networks
FLNN-ANFIS Functional link neural network with

adaptive neural fuzzy inference system
MARA Multiple artifact rejection algorithm
FOOBI Fourth-order Tensor method
UBSS Underdetermined blind source separation
TDSEP Temporal de-correlation source separation
LAMIC Lagged auto-mutual information clustering
ERP Event-related potential
CNR Contrast-to-noise ratio
EEMD Ensemble empirical mode decomposition
MCCA Multi-set canonical correlation analysis
WPT Wavelet packet transform
Local SSA Local singular spectrum analysis
MSSA Multivariate singular spectrum analysis
CC Correlation coefficient
RRMSE Relative root-mean-squared error
LPM Linear programming machine
JBSS Joint blind source separation
PSNR Peak signal-to-noise ratio
EAWICA Enhanced automated wavelet-ICA
SSA Stationary subspace analysis
CBSS Constrained BSS
MI Mutual information
FASTER Fully automated statistical thresholding for

EEG artifact rejection
OSET Open-source electrophysiological toolbox
AAR Automatic artifact removal
ADJUST Automatic EEG artifact detector based on

the joint use of spatial and temporal
features

BCI Brain-computer-interface
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Figure 1 Left: a scalp EEG segment where all channels are more or less contaminated with muscle activity during the 10 seconds.
Right: the 10-second scalp EEG recordings with 21 channels from a long-term Epilepsy Monitoring Unit (OSG EEG recorders, Rumst,
Belgium). The seizure EEG was contaminated with muscle artifacts and eye blinks. Muscle artifacts can be observed between 0 sec
and 3.9 sec on channels F7, T3, T5, C3, and T1 and between 5 sec and 10 sec on channels F8, T4, F4, C4, and P4 [16].

Table 2 EEG rhythms with their corresponding frequency
bands.

Rhythm or
transient

EEG signal
component

Frequency
band (Hz)

Rhythm Delta < 4
Theta 4—8
Alpha 8—13
Beta 14—30
Gamma > 30
Mu 7.5—12.5

Transient Seizure and
inter-ictal
activities

0.5—30

Existing artifact handling methods

In this section, we present the different artifact handling
methods found from extensive literature review.

Artifact avoidance

Artifact avoidance is a preventive and precautionary way
to avoid or minimize artifacts by instructing the subject to
remain still and try to avoid unnecessary blinks, eye/body
movements and so on. Also by proper grounding of the EEG
recorder, one can reduce the supply mains interference.
Although artifact avoidance is not the best way to get rid of
artifacts completely, minimizing artifacts can reduce both
the data loss and the computational complexity. However,
based on applications, sometimes this is a very unrealistic
solution; e.g. in an ambulatory EEG monitoring or brain-
computer interface (BCI) application. Moreover, there are
several limitations to employ such approach since some of
the physiological artifacts (e.g. ECG) are involuntary and
therefore cannot be avoided. In addition, the subject can-
not limit eye blinking or movement for a long period of
time, especially if the subject is a child. Therefore, there
will always be some artifacts present in the recording and
those should be handled in the digital signal processing
domain.

Table 3 Different types of artifacts and their origins.

Artifact types and sources

Physiological/internal Extra-physiological/external

Ocular Cardiac Muscle Others Instrumental Interference Movement

Eye blink
Eye movement
Eye flatter
REM sleep

ECG pulse Chewing
Swallowing
Clenching
Sniffing
Talking
Scalp
contraction

Gloss kinetic
Skin
Respiration

Electrode
Displacement
and pop-up
Cable
movement
Poor ground

Electrical
Magnetic
Sound
Optical
EM waves

Head
movement
Body
movement
Limbs
movement
Tremor
Other
movements
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Artifact detection

Identifying artifacts is the first and most important step
for handling artifacts. Often the artifacts overlap with
EEG signals in both spectral and temporal domains such
that it becomes difficult to use simple filtering or straight
forward signal processing technique. In many applica-
tions, it is required to identify or separate artifacts in
real-time, therefore knowing both the artifact and sig-
nal characteristics is really necessary in order to detect
them faster. Detection of artifacts may refer to detecting
a particular epoch or detecting an independent component
to be artifactual after performing independent compo-
nent analysis, ICA (detail about ICA is given later in this
section).

Whether it should be detected in time domain or fre-
quency domain or even in both by utilizing time-frequency
analysis, this decision depends on the type of artifacts
and/or type of applications. Some of other factors for select-
ing a detection method include:

• availability of a reference artifact source;
• the number of available recording channels;
• the need for removing the artifacts after detection stage.

A few existing methods adopted the idea of machine
learning for artifact separation from useful EEG signal by
training a classifier with (supervised) or without (unsuper-
vised) labeled training datasets. Once artifactual epochs
are identified by applying a machine learning algorithm,
such epochs are either highlighted as artifact annotator to
the clinicians for helping in decision making (e.g. epileptic
seizure detection) or can be rejected before examina-
tion from clinician or before sending to automated signal
processing system [70].

Machine learning techniques are mainly two types: super-
vised and unsupervised learning. Among supervised learning
algorithms, two most popular methods used for classifica-
tion between artifact and brain signals are artificial neural
network (ANN) [11,38,40,57,83] and support vector machine
(SVM) [6,44,70,71,85,87]. Among unsupervised learning, k-
means clustering and outlier detection are most common
in this particular area of research [70]. A basic approach
to classify artifact from EEG by using the machine learning
classifier is shown in Fig. 2.

Artifactual segment rejection

One way to reduce the effects of artifacts is to reject/cancel
the epoch or segment of EEG data which is labeled as arti-
factual. The major drawback of this method is that it also
removes important EEG information, which results in the
loss of data [52,66]. This was an early technique of handling
artifacts, but nowadays with the introduction of recent sig-
nal processing techniques, the preference is for techniques
for artifact removal or correcting them instead of rejecting
the data epoch. However, in certain applications, this tech-
nique can still work reasonably well, e.g. offline analysis or
during training of any classifier.

Figure 2 Machine learning classification for identifying arti-
factual epoch from clean EEG epoch.

Artifact removal

Artifact removal involves canceling or correcting the arti-
facts without distorting the signal of interest. This is
primarily done in two ways: either by filtering and regres-
sion or by separating/decomposing the EEG data into other
domains.

Regression
Regression analysis [43,101], using a multi-modal linear
model between observed and a reference signal, is a
traditional way of identifying artifactual samples and con-
sequently removing such sample that do not belong to the
model. Observed artifact-contaminated EEG signal and an
artifact reference signal are common methods for remov-
ing some physiological artifacts such as ocular and cardiac
artifacts.

However, such regression analysis often fails when there
is no reference channel available. In addition, EEG signal
being non-linear and non-stationary process, linear regres-
sion is not the best choice for analysis in such applications.
Moreover, it can only be used to treat few particular types
of artifact, not all types.

Blind source separation
One of the most popular artifact detection/removal
methods is based on blind source separation (BSS)
[33,43,62,86,97], which aims to extract the individual
unknown source signals from their mixtures and possibly
to estimate the unknown mixing channels using only the
information within the mixtures observed at the output of
each channel with no, or very limited, knowledge about
the source signals and the mixing channel. Let denote by
X the observed signals in multi-channel recordings, which is
assumed to be linear mixture of the sources, S with additive
white noise vector N, i.e.

X = AS + N (1)
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Figure 3 Illustration of blind source separation technique.

Then, the objective is to find an estimate of the linear
mixture matrix A, denoted by W by an iterative process and
obtain an estimate for the source signals as follows

Ŝ = WX (2)

A basic BSS technique is illustrated in Fig. 3. The main
assumption with BSS is that the number of sources can be
at most (or lower) equal to that of observed channels and
the sources need to be independent (for ICA) or maximally
uncorrelated (for CCA) from each other:

• ICA: independent component analysis (ICA) is based on
blind source separation (BSS) technique where it is
assumed that the sources are linearly independent. The
major problem with ICA-based artifact detection and
removal is that, it is often not automatic. It requires
manual intervention to reject independent components
(ICs) with visually detected artifacts after decomposi-
tion. However, it (i.e. artifact detection and removal)
can be made automatic by labeling the ICs through some
features that can quantify the possibility of being artifac-
tual. Such procedure is performed by combining ICA with
another complementary method such as Wavelet Trans-
form or Empirical Mode Decomposition (EMD) or using
classifier like SVM or even with a help of reference chan-
nel [110]. However, even in such case, the artifactual ICs
may also contain some residual neural signals. Therefore,
during signal reconstruction after completely rejecting
that particular IC, it introduces distortion to the neu-
ral signal. Another problem is that it cannot operate on
single-channel data, since the number of recording chan-
nels must be at least equal to the number of independent
sources. The computational complexity is another fac-
tor that limits the choice of ICA for artifact removal in
applications that require online/real-time implementa-
tion of the algorithm. Finally, the involvement of iterative
process in computing ICA algorithm makes it difficult
to perform robustly. E.g. ICA may be useful to remove
global artifacts such as ocular artifacts [11,27,31,43,46]
or sometimes other physiological artifacts. There are few
works reported the use of modified [23] or constrained
ICA [1,41,79,86] for automated and better performance
in artifact detection and removal;

• CCA: canonical correlation analysis or CCA is another BSS
method for separating a number of mixed or contaminated
signals that uses second-order statistics (SOS) to generate
components derived from their uncorrelated nature. By
looking for uncorrelated components, the approach uses
a weaker condition than statistical independence sought
by the ICA algorithm. ICA does not take temporal cor-
relations into account while CCA addresses this point by
being capable of finding uncorrelated components [91]. So
the spatial correlation being zero while it optimizes only

the temporal correlation (i.e. auto-correlation). Then
CCA attempts to find an ordered set of components
from maximum auto-correlation to least auto-correlation.
The component with least auto-correlation corresponds
mostly to artifacts. The advantages of CCA over ICA are
being automatic and more computationally efficient;

• MCA: morphological component analysis (MCA) decom-
poses the recorded signal into components that have
different morphological characteristics where each com-
ponent is sparsely represented in an over-complete
dictionary [91]. It is only applicable to certain known arti-
facts whose wave shape or morphology are known and
stored in a database. The efficacy of this method greatly
depends on the available artifact-template database. In
[106,107], MCA is used to remove ocular artifacts and
some of the muscle artifacts originating from jaw clench-
ing, swallowing, and eyebrow rising.

Time-frequency representation
Time-frequency analysis of non-stationary time series data
is quite popular in biomedical signal processing, e.g. in EEG
signal processing. The reason of using simultaneous time and
frequency domain analysis is because of the non-stationary
properties of this type of signal. Therefore, any momentary
change in frequency values for any signal components (e.g.
either artifact or seizure) [76,90] can be captured in a par-
ticular temporal window. In [69], a time-frequency analysis
of ocular artifacts (OAs) including blinks and saccades found
in EOG have been reported where the results reveal that
frequencies up to 181 Hz can be present in a subject’s EOG
for certain tasks. This finding suggests that if EOG is used
for ocular artifact removal from EEG, then EOG should be
sampled at least 362 Hz to avoid aliasing.

The common time-frequency representation is based on
the short-time Fourier Transform (STFT). This method is not
so effective as it has uniform time-frequency resolution at
all frequencies. For EEG, since the bandwidth is around
0.5—120 Hz (although most of the time we are only inter-
ested in < 30 Hz) and many of the artifacts (specially motion
and ocular artifacts) appear in the lower frequency region
(< 10 Hz), therefore, it is required to have high frequency
resolution in lower frequency region which STFT cannot
provide. To address this issue, a wavelet-based approach can
be used as the wavelet transform, and provides proportional
resolution in each frequency band suitable for EEG signals.

Wavelet transform
The wavelet transform is a time-scale representation
method that decomposes signal f(t) into basis functions of
time and scale which are dilated and translated versions of
a basis function  (t) called mother wavelet [51]. Translation
is accomplished by considering all possible integer transla-
tions of  (t) and dilation is obtained by multiplying t by
a scaling factor, which is usually factors of 2. The follow-
ing equation shows how wavelets are generated from the
mother wavelet:

 j,k(t) = 2j/2 (2j/2t − k) (3)

where j indicates the resolution level and k is the translation
in time. This is called dyadic scaling, since the scaling factor
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Figure 4 An example structure of 2-level decomposition by
discrete wavelet transform.

is taken to be 2. Wavelet decomposition is a linear expansion
and it is expressed as

f(t) =
+∞∑
k=−∞

[ck�(t − k)] +
+∞∑
k=−∞

+∞∑
j=0

dj,k (2jt − k) (4)

where �(t) is the scaling function and ck and dj,k are the
coarse and detail level expansion coefficients, respectively.
A wide variety of functions could be chosen as the mother
wavelet as long as following equation is satisfied:∫ +∞

−∞
 (t)dt = 0 (5)

There are several techniques based on wavelet theory,
such as wavelet packets, wavelet approximation and decom-
position, discrete and continuous wavelet transform, and
so forth. The most commonly used technique is Discrete
Wavelet Transform (DWT). The DWT is derived from con-
tinuous wavelet transform with discrete input. The relation
between input and output can be represented as

xa,L[n] =
N∑
k=1

xa−1,L[2n− k]g[k] (6)

xa,H[n] =
N∑
k=1

xa−1,L[2n− k]h[k] (7)

where g[n] is a low pass filter just like scaling function and
h[n] is a high pass filter just like mother wavelet function.
Briefly, discrete wavelet transform is entering of a signal into
a low pass filter to get the low frequency component and
into a high pass filter to get the high frequency component.
An example structure of 2-level decomposition by discrete
wavelet transform is shown in Fig. 4 [51].

Once the signal is decomposed into detail and approxi-
mate coefficients, thresholding is applied on the coefficients
to denoise the signal from artifacts. Then the new sets of
coefficients (all detail with final level approx. coefficients)
are added up to reconstruct back the artifact-reduced sig-
nal.

Empirical mode decomposition
EMD is an empirical and data-driven method developed to
perform on non-stationary, non-linear, stochastic processes
and therefore it is ideally suitable for EEG signal analysis and
processing. However, the computational complexity of EMD
is quite heavy, so may not be suitable for online applications.
Moreover, the theory behind EMD is still not complete and
so far used in empirical studies, therefore it is difficult to
predict its robustness in all EEG recordings.

EMD algorithm decomposes a signal, s[n] into a sum
of the band-limited components/functions, c[n] called

Table 4 Process flow of EMD algorithm to generate IMFS.

Input: data sequence s[n]

1. Identify all the local extrema
2. Separately connect all the maxima and minima with

natural cubic spline lines to form the upper, u[n], and
lower, l[n], envelopes

3. Find the mean of the envelopes as z[n] = [u[n] + 1[n]]/2
4. Take the difference between the data and the mean as the

proto-IMF, h[n] = s[n] — z[n]
5. Check the proto-IMF against the definition of IMF and the

stoppage criterion to determine if it is an IMF
6. If the proto-IMF does not satisfy the definition, repeat

step 1 to 5 on h[n] as many time as needed till it satisfies
the definition

7. If the proto-IMF does satisfy the definition, assign the
proto-IMF as an IMF component, c[n]

8. Repeat the operation step 1 to 7 on the residue,
q[n] = s[n] — c[n], as the data

9. The operation ends when the residue contains no more
than one extremum

intrinsic mode functions (IMF) with well defined instanta-
neous frequencies [58,94]. There are two basic conditions
to be an IMF: (i) the number of extrema must be equal (or
at most may differ by one) to the number of zero cross-
ings (ii) any point, the mean value of the two envelopes
defined by the local maxima and the local minima has to
be zero [58]. The general process flow of EMD algorithm
is shown in Table 4. EEMD: it is an enhanced version of
EMD (enhanced empirical mode decomposition) and inspired
from the fact that EMD algorithm is very sensitive to noise,
which often leads to mode mixing complication. Therefore,
EEMD is proposed which uses an average number of ensem-
bles (IMFs) from EMD as the optimal IMFs thus it provides a
noise-assisted data analysis method [94].

Adaptive filtering
An adaptive filter is a system with a linear filter that has
a transfer function controlled by variable parameters and
a means to adjust those parameters according to an opti-
mization algorithm [89]. The filter weights can adapt based
on the feedback from output of the system and it requires
a reference input to compare the desired output with the
observed output. An improved adaptive filtering by opti-
mal projection which is based on common spatial pattern
for artifact removal is mentioned in [9,10], especially for
epilepsy patient’s EEG [74]. Let s[n] denote the observed
signal which is combination of the original EEG, x[n] and
additive artifact r[n]. Then, if the artifact source v[n] is
available from a dedicated channel (e.g. EOG or ECG); an
adaptive algorithm (e.g. LMS, RLS, etc.) can be used to
derive an artifact-free EEG, x′[n] given that the desired EEG
and artifact signal are independent (or at least uncorrelated
[91]). An illustration of the use of adaptive filter for EOG
artifact removal is shown in Fig. 5.

Principal component analysis (PCA)
PCA is a type of spatial filter that transforms the time
domain datasets into a different space by rotating axes in
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Figure 5 Typical use of adaptive filtering in canceling phys-
iological artifacts with available artifact source channel as
reference.

an N-dimensional space (where n is the number of varia-
bles or EEG channels) such that each dimension in the new
space has minimum variance and the axes are orthogonal to
each other [17]. PCA reduces data dimension and highlights
specific features of data, which is usually difficult to iden-
tify in the spatially unfiltered data as the new components
are created by weighted combinations of all EEG channels.
Two recent papers proposed artifact removal method based
on PCA: Turnip [98] reported the use of robust PCA after
preprocessing is done based on wavelet de-noising and band-
pass-filtering; while Turnip and Junaidi [99] compared PCA
with ICA for artifact removal and found ICA performs better
than PCA. Both these papers have evaluated their method
qualitatively; therefore, it is not possible to comment exclu-
sively on the efficacy of PCA in detecting and removing
artifacts. One important limitation of PCA (or SVD) is that
it fails to separate/identify ocular or similar artifacts from
EEG when amplitudes are comparable since PCA depends on
the higher order statistical property [79].

Hybrid methods
In recent years, researchers have been keen to utilize the
advantages of different methods by combining them into
a single method for artifact detection and removal, i.e. a
hybrid method which has two or more stages. Some of these
methods are discussed below:

• wavelet-BSS: this hybrid method formed by integrat-
ing two popular methods: wavelet transform and blind
source separation is mainly inspired from the fact that
only BSS-based separation of artifactual components (e.g.
ICs) is often erroneous since the separated artifactual
component also contains residual neural information.
Therefore, completely rejecting such component will
introduce significant distortion in reconstructed EEG

Figure 7 Process flow of the hybrid BSS-SVM algorithm.

signal. Hence, the multi-channel datasets are trans-
formed into ICs or CCs and then possible artifactual
component is decomposed by wavelet transform to dif-
ferent frequency bands of detail coefficients. After that,
the artifactual coefficients are denoised by threshold-
ing, which eventually preserve the residual neural signals
of low amplitude after thresholding the higher artifac-
tual segments. The related articles are [14,34,50,52] for
wavelet-ICA, [109] for wavelet-CCA. On the other hand,
there are similar hybrid methods that can be applied to
single-channel EEG data by reversing the order of wavelet
transform and BSS blocks. For example Calcagno et al. and
Mammone and Morabito [12,52] reported artifact removal
by first decomposing signal into wavelet coefficients then
artifactual coefficients are passed through BSS block to
separate artifacts from neural signal. However, typically
the prior way is more known to the research community
s wavelet enhanced ICA or wavelet enhanced CCA. An
example of such method is shown in Fig. 6. Please note
that the type of wavelet transform can be DWT, CWT, SWT
or sometimes WPT [8];

• EMD-BSS: this hybrid method involves BSS with EMD
instead of wavelet transform. The difference is that usu-
ally the first stage is to decompose the signal into IMFs
by EMD or EEMD and then apply BSS (ICA or CCA) on the
IMFs to identify artifactual component followed by reject-
ing the artifactual IC or CC. The general process flow of
this hybrid method is also shown in the same Fig. 6. Such
methods are reported in [16,94,108];

• BSS-SVM: Shoker et al. [87] reported a hybrid BSS-SVM
algorithm for eye blink and ECG artifact removal where
certain carefully chosen features are extracted from
separated source components and then fed into a SVM
classifier to identify artifact components followed by
removing them. Finally, the rest of the source compo-
nents are re-projected to reconstruct artifact-free EEG.
The whole system is illustrated in Fig. 7;

• REG-BSS: Klados et al. [43] reported a hybrid methodology
by combining BSS and regression-based adaptive filtering
(with vEOG and hEOG as reference channels) for rejection
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Figure 6 General process flow of EMD-BSS and wavelet-BSS methods.
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Figure 8 Process flow of the hybrid REG-BSS methodology.

Figure 9 Process flow of the hybrid ICA-ARX methodology.

of ocular artifacts as shown in Fig. 8. Similar techniques
have been used by [31] to remove ocular artifacts by com-
bining ICA and adaptive filtering. Another hybrid approach
combining ICA and Auto-Regressive eXogenous (ARX) was
proposed by Wang et al. [102] to remove ocular artifacts
robustly as shown in Fig. 9. In this method, ARX is used
to reduce the negative effect induced by ICA by building
the ARX multi-models based on the ICA correlated sig-
nals and the reference EEG that are selected prior to the
artifact-contamination;

• other hybrid methods: Nguyen et al. [63] report EOG arti-
fact removal using a hybrid method combined of Wavelet
decomposition and Artificial Neural Network and termed
as Wavelet Neural Network (WNN) where the reference
EOG channel is only required during training of ANN clas-
sifier. A method combining DWT and ANC (Adaptive noise
canceler) is proposed in [73] to remove ocular artifacts
where the OA reference is derived from DWT decomposi-
tion and then used in the adaptive filter as reference. On
the other hand, Navarro et al. [60] used the combination
of EMD and adaptive filter (with RLS algorithm) to remove
ECG artifacts from EEG recordings. The authors in [38]
presented a new way to remove EOG and EMG artifacts
from EEG by using a hybrid combination of functional link
neural network (FLNN) and adaptive neural fuzzy infer-
ence system (ANFIS). The ANFIS usually has two parts:
a non-linear antecedent and a linear consequent; how-
ever, in their proposed system, the second part is replaced
with the FLNN to enhance the non-linear approximation
ability. Then an adaptive filtering algorithm adjusts the
parameters of both ANFIS and FLNN.

Statistical features
Several statistical features [37,57,66] are used in machine
learning classifier or during threshold calculation in
wavelet/EMD/ICA-based methods for separating or identi-
fying artifacts from EEG signal of interest. Some of such
features are discussed in Appendix A.

Comparison between methods

In order to compare different artifact handling methods
qualitatively, several factors need to be considered that can
evaluate the pros and cons of these methods. Such factors
are described as follows: a detailed comparison between the
existing artifact detection and removal methods in the liter-
ature found from recognized journals is provided in Table 5.

Removal performance

The performance evaluation of artifact removal methods
found in the literature is always problematic. It can be
done either by visually by expert(s) which is subjective (not
standard) or by synthetic/semi-synthetic data (but uncer-
tainty of reconstructed data whether perfectly realistic or
not). Since there is neither any ground truth data available
nor any universal or standard quantitative metric(s) used
in the literature that can capture both amount of artifact
removal and distortion. Therefore, it is quite difficult to
compare different artifact removal methods based on their
ability to remove artifacts since very few quantitative eval-
uations have been reported in the literature. Most of the
published articles evaluated their method in terms of some
qualitative plots. In addition, very few of them quantified
the distortion to desired EEG signals due to the removal
effect. Therefore, it is not fair to tell which performs best
based on the study.

Automatic or semi-automatic

Most of the EEG-based applications require automated infor-
mation processing, particularly when it is an online/real-
time implementation. In addition, manual identification
of artifactual component or epoch is very time-consuming
and laborious for multi-channel long-term data sequences.
Therefore, many signal processing techniques have been
proposed, and some useful a priori signal or artifact
statistics/characteristics have been utilized. Among them,
BSS-based techniques can sometimes be semi-automated
because of identification of artifactual component may
require some training or parameter selection/tuning.
Although there are few papers available that propose auto-
mated identification of ICs after ICA [104,111]; however,
they both require training samples for supervised classifi-
cation and in addition requires an extra information in the
form of contact impedance measurement [31]. If the method
involves ICA for automatic detection of artifacts, then there
has to be another stage (or method) in order to make the
whole process automated.

Real-time/online implementation

Online/real-time implementation requires the algorithm to
be fast enough and to have low-enough complexity for
such application. Here, online implementation refers to
the algorithms implemented in software platform capable
of online/real-time processing, not in hardware platform.
However, some EEG-based applications such as wireless
ambulatory EEG monitoring may require on-chip implemen-
tation of the artifact detection/removal algorithm. In such
cases, the computational complexity has to be minimal,
which is a great challenge, and so far to the best of our

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

dx.doi.org/10.1016/j.neucli.2016.07.002


NEUCLI 2534 1—19Please cite this article in press as: Islam MK, et al. Methods for artifact detection and removal from scalp EEG: A review.
Neurophysiologie Clinique/Clinical Neurophysiology (2016), http://dx.doi.org/10.1016/j.neucli.2016.07.002

ARTICLE IN PRESS+Model
NEUCLI 2534 1—19

10 M.K. Islam et al.

Table 5 Comparative analysis of artifact removal methods found in literature published in recognized journals.Q10

Articles Type of
artifacts

Method Online/
real-time

Automated Reference Multi/
single-
channel

Application

Shoker
et al. [87]

Eye blink ECG BSS-SVM
(SOBI-SVM)

NIA Y N Multi General; e.g.
ERP analysis

Park et al.
[72]

ECG EIH-EAS Y Y N Single General; e.g.
sleep/wake
state or
epilepsy
monitoring

Hamaneh
et al. [34]

EKG ICA-CWT N/A Y Template Multi General; e.g.
epilepsy
monitoring

Shao et al.
[85]

Eye
blink + ECG

ICA-weighted
PWC-PSVM

N/A Y Template Multi General

Zhao et al.
[110]

Ocular DWT-APF Y Y N Single Monitor mental
health (OPTIMI),
portable
applications

De Clercq
et al. [20]

Muscle CCA N N N Multi Epilepsy
monitoring;
applied on ictal
datasets

Ng et al.
[62]

EOG + EMG SOBI-SWT N/A Y N Multi � rhythm
extraction

Mateo et al.
[54]

Ocular RBF based
ANN

N/A Y EOG channel
(vEOG + hEOG)

Single General

Anderson
et al. [4]

EOG + 60-Hz
noise

GSVD-SFA May be N EOG channel Multi BCI; mental task

Van Huffel
et al. [19]

Muscle + 50-
Hz
noise

SVD N/A N N Single/multi Ictal EEG

Daly et al.
[18]

Head
movement

ICA N Semi-
automated

Accelerometer Multi General; BCI

Noureddin
et al. [68]

EOG + Blink Adaptive
Filter (RLS
and H�)

Y Y Eye Tracker Multi General

Peng et al.
[73]

Ocular DWT-ANC May be Y N Single OPTIMI,
portable
applications

Nazarpour
et al. [61]

Blink STF-TS-RMVB Y Y N Multi General

James et al.
[41]

Ocular cICA Y Y Derived
reference

Multi Seizure analysis

Schetinin
et al. [83]

ECG, EOG,
muscle, and
electrode
noise

PNN-GMDH-
DTT

N/A Y Template Multi Sleeping
newborns

Mahajan
et al. [50]

Eye blink ICA-DWT with
statistics

N/A Y N Multi General

Kierkels
et al. [42]

EOG Kalman filter N/A Y Eye tracker Single General

Sweeney
et al. [94]

Motion EEMD-CCA N/A Y N Single Ambulatory
single-channel
applications

Wang et al.
[102]

Ocular ICA-ARX N/A Y N Multi General

Burger et al.
[11]

EOG ICA-WNN N/A N N Multi General
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Table 5 (Continued)

Articles Type of
artifacts

Method Online/
real-time

Automated Reference Multi/
single-
channel

Application

Klados et al.
[43]

Ocular REG-ICA N N EOG Multi General

O’Regan
et al. [71]

Head
movement

Feature fusion
(69) to SVM

N/A Y Gyroscope Single Ambulatory
EEG: seizure
monitoring + BCI

Ma et al.
[49]

Ocular BSS-based
CSPA

N/A Y N Multi General

Ma et al.
[48]

Muscle ICA-SR N/A Y N Multi General

Jafarifarmand
et al. [40]

Ocular
muscular
and ECG

Adaptive FLN-
RBFN-based
filter (ANC)

N/A Y ECG, EOG,
EMG

Single/multi General

Nguyen
et al. [63]

EOG WNN Y Y, training
required

EOG only for
training

Single Mental and
visual task

Hu et al.
[38]

EOG and
EMG

FLNN-ANFIS May be Y EOG, EMG Single/multi General

Hartmann
et al. [35]

Most types Iterative
Bayesian
Estimation
(MMSE)

N/A Y N Single/multi Epilepsy
monitoring

Sameni
et al. [81]

Ocular Generalized
Eigenvalue
decomposi-
tion

N/A Y EOG Multi General

Akhtar et al.
[1]

Most types Spatially
cICA + Wavelet
de-noising

N/A Y May be
sometimes

Multi General

Molla et al.
[58]

EOG Adaptive
filtering
(EMD-based
filter)

N/A Y Fractional
Gaussian
noise

Single General

LeVan et al.
[45]

Ocular,
EMG,
movement

ICA + Bayesian
classification

N/A Y ECG Multi Ictal scalp EEG
for epilepsy
diagnosis

Lawhern
et al. [44]

Ocular,
muscle,
movement

AR model
(fea-
ture) + SVM

Yes Y N Single Real-time EEG
applications

Hallez et al.
[33]

Muscle and
ocular

BSS
(CCA/spatial
cICA) + RAP-
MUSIC

N/A Semi-
automated*

N Multi Ictal EEG source
imaging

Bhattacharyya
et al. [6]

All of them 26D
features + bi-
classification

N/A Y N Single Neonatal
seizure
detection

Flexer et al.
[27]

Ocular ICA N/A Semi-
automated

N Multi Blind subjects

Teixeira
et al. [96]

EOG + baseline
drifts

Local
SSA + embedding
dimension

N/A Y N Single General

Ge et al.
[28]

Ocular FOOBI based
on UBSS

N/A Y N Multi Only for healthy
subjects; not
for epilepsy

dx.doi.org/10.1016/j.neucli.2016.07.002


NEUCLI 2534 1—19Please cite this article in press as: Islam MK, et al. Methods for artifact detection and removal from scalp EEG: A review.
Neurophysiologie Clinique/Clinical Neurophysiology (2016), http://dx.doi.org/10.1016/j.neucli.2016.07.002

ARTICLE IN PRESS+Model
NEUCLI 2534 1—19

12 M.K. Islam et al.

Table 5 (Continued)

Articles Type of
artifacts

Method Online/
real-time

Automated Reference Multi/
single-
channel

Application

Nicolaou
et al. [64]

EOG, EMG and
ECG

TDSEP + LAMIC N/A Y EOG Multi Discovery and
analysis of ERP

Rashed-Al-
Mahfuz
et al. [77]

Ocular EMD N/A Y Simulated Multi BCI

Guerrero-
Mosquera
et al. [31]

Ocular Adaptive
filtering + ICA

N/A Y Fpl, Fp2, F7
and F8
Electrodes

Multi General

Mammone
et al. [52]

Ocular + muscle +
electrical shift

EAWICA
(wICA)

N Y N Multi General

Winkler
et al.
[104]

EOG + EMG TDSEP (based
on ICA) + LPM

Y Y N Multi BCI

Chen et al.
[16]

Muscle EEMD-JBSS N/A Y N Single General + ictal
EEG

Zeng et al.
[108]

EOG SSA
(BSS) + EMD

N N N Multi Diagnosis

knowledge, no real-time hardware implementation has been
performed.

Single or multi-channel

BSS-based methods require multi-channels to function, the
more number of channels the better for separating indi-
vidual sources. Therefore, such methods cannot be used
in low-channel (e.g. 4—6) or single-channel based appli-
cations (e.g. in ambulatory monitoring of epilepsy patient
or ambulatory BCI-prosthesis). On the other hand, Wavelet
transform and EMD-based techniques can work with single-
channel analysis by decomposing a single data sequence into
multiple components (approx./detail coefficient for wavelet
decomposition and IMF for EMD).

Reference channel

Most of the available methods require a dedicated arti-
fact channel to be functional. In order to remove ocular or
cardiac artifacts, the reference channel often provides sat-
isfactory complementary information to identify ECG/EOG
artifacts. Besides, real-time contact impedance measure-
ment can provide the complementary information about
artifacts due to electrode pop, movement or loose con-
nection. Some movement tracking devices such as motion
captured camera, accelerometer and/or gyroscope can help
to detect motion artifacts.

EOG
Many articles reported to remove EOG artifacts by the use
of EOG reference channel [27,43,110]. In [110], a hybrid de-
noising method has been reported that combines discrete
wavelet transformation (DWT) and an adaptive predictor
filter (APF) for automatic identification and removal of

ocular artifacts for portable EEG applications which is
found to achieve lower MSE and higher correlation between
cleaned and original EEG in comparison with existing
methods such as wavelet packet transform (WPT) and
independent component analysis (ICA), discrete wavelet
transform (DWT) and adaptive noise cancellation (ANC).
Another article [43] reported an automated ocular artifact
removal method using adaptive filtering and ICA with the
help of vertical (vEOG) and horizontal (hEOG) EOG channel
as reference. On the other hand, Flexer et al. [27] pro-
posed an ICA-based ocular artifact removal method from
blind subjects’ EEG utilizing both vertical and horizontal
EOG references.

ECG
Authors in [21] proposed removal/reduction of ECG/cardiac
artifacts from EEG using a separate ECG reference channel.
In [31], an automatic method based on a modified ICA algo-
rithm has been proposed that works for a single-channel EEG
and the ECG (as reference) which gives promising results
when compared with two popular methods that use a refer-
ence channel namely ensemble average subtraction (EAS)
and adaptive filtering. The other two articles proposed
their methods for application in neonatal EEG monitoring.
Another paper [60] proposed a combination of EMD and
adaptive filtering based method for ECG artifact removal
in preterm EEG and reported up to 17% improvement in cor-
relation coefficient between original and cleaned datasets
compared with removal by only adaptive filtering.

Eye tracker
Both Kierkels et al. [42] and Noureddin et al. [68] reported
techniques for removal of ocular artifacts by using an eye
tracker as reference. The advantage of using eye tracker
is that it can reduce the undesired EEG distortion pro-
duced by using an EOG channel as reference since EOG
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not only captures ocular events but also some frontal EEG
events. Besides, in practical daily applications, the use of
eye tracker removes the requirement of EOG electrodes
attached to the face. Results in [42] show significantly
improved performance in removing of only eye movement
artifacts by combining Kalman filter with the eye tracker
information compared with three other popular methods
namely Regression, PCA, and SOBI. On the other hand,
Noureddin et al. [68] introduced an online algorithm for ocu-
lar artifacts (both movements and blink) removal from EEG
by utilizing a high-speed eye tracker (> 400 Hz) along with
the frontal EEG as reference instead of EOG channel. The
article used two adaptive filters (RLS and H) to prove the
efficacy of their proposed technique, which was shown to
outperform the techniques using only EOG as reference.

Accelerometer
There are few articles reported to have used accelerometer
recordings in conjunction with EEG recordings for detecting
motion artifacts [82,93]. In [82], it has been shown that
movement artifacts can be detected automatically using
an accelerometer with a developed algorithm based on AR
modeling and thus can increase the speed efficiency for
automatic computation of EEG model parameters compared
with manual detection of movement artifacts. Sweeney
reported in [93] that the use of accelerometer as refer-
ence channel not only can detect motion artifacts but also
can remove them with the use of different filtering tech-
niques such as adaptive filters, Kalman filtering and Wiener
filtering.

Gyroscope
Authors in [71] proposed to detect different head movement
artifacts automatically by using a gyroscope as complemen-
tary features in fusion with EEG features and finally with
the help of SVM, to classify artifacts from neural informa-
tion. The method is inspired by the realization of an artifact
detection system for implementing with the point-of-care
REACT (Real-time EEG Analysis for event detection) tech-
nology that has potential application in the detection of
neurological events (e.g. seizure events) in adults. The arti-
facts were generated for 10 different types of head-related
movements using 14-channel Emotiv EEG headset and the
movement time was recorded for validation during arti-
fact detection. The reported accuracy in terms of Avg. ROC
areas was 0.802 and 0.907 for participant independent and
dependent systems respectively.

Contact impedance measurement
Bertrand et al. and Mihajlovic et al. [5,55,56] reported that
by measuring the change in contact impedance due to head
movements can help to estimate the motion artifacts and by
utilizing this information with an adaptive filter in combina-
tion with band-pass filtering, the artifacts can be reduced
significantly in real-time. The article also studies the effect
of head movement artifacts on EEG recordings results in
contaminating the spectral domain in < 20 Hz frequency.

Motion captured camera
Authors in [32] proposed a channel and IC-based method
to remove movement artifacts during walking and running

from a high-density EEG recordings (248-channel) with the
help of kinematics and kinetics information acquired from a
8-camera, 120 frames/s, motion capture system. The sub-
ject was asked to walk and run on a custom built, dual-belt,
force measuring treadmill with two 24-inwide belts mounted
flush with the floor while simultaneously both brain and
body dynamics were recorded. The findings conclude that
high-density EEG is possible to use in order to study brain
dynamics during whole body movements; and the artifact
from rhythmic gait events can be reduced by template
regression procedure.

Robustness

Robustness is an important issue in developing any arti-
fact removal algorithm as artifacts are of diverse types and
contaminate the EEG differently in different recording envi-
ronments. Some of the factors that should be considered for
robustness include artifact-SNR, type of artifact, duration
of artifacts, subject-variability, environmental variability,
application-specificity.

Discussion

Current status

Although significant amount of efforts has been made to
develop methods for artifact detection and removal in EEG
applications, it is still an active area of research. Most of
them handle single type of artifact, many of them cannot
work for single-channel EEG, some of them require training
data, some require a dedicated reference channel, some are
designed for general purpose applications that often leads
to overcorrection of data and some of them are not fully
automated. Some of the currently available major software
plug-in GUIs are discussed in Appendix B.

Future direction

Here we present the future direction for handling artifacts
by raising realistic issues, proposing some ideas and provid-
ing recommendation based on review of existing solutions.

Probability mapping
From the above literature review of existing solutions for
artifact handling, it is obvious that artifacts are of dif-
ferent types and not all types will play major role in all
EEG-based applications. Sometimes, clinicians prefer man-
ual event detection than automated algorithm for certain
disease diagnosis (e.g. seizure detection). However, such
manual analysis is also time-consuming. In such cases, if we
can give the users an option to choose which particular arti-
facts they want to be detected and/or removed with what
amount (%) for each epoch or data-segment of duration 1-
sec (depends on application), then the process would still
be automated with tuning facilities for the users either to
turn-ON or remain OFF if not required. In order to imple-
ment such facility, a probability mapping of artifacts can
be proposed (something similar to the idea of [105]) for
each epoch of data based on some statistical features to
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quantify the probability of an epoch to be artifactual. Then
the user can opt for some threshold of probability above
which he/she may want to remove artifacts while below
the threshold, to preserve the epoch as it is. Thus it is pos-
sible to design automated artifact detection and removal
algorithm, which is application-specific with tuning facil-
ity for user. This would greatly enhance the signal analysis
process by avoiding the chance of removing important sig-
nal information. In addition, it will reduce the unnecessary
computational resources and time by focusing on the desired
artifacts for detection/removal (i.e. only those types to be
expected to affect the signal quality) and ignoring the rest
of them.

Standard performance evaluation
One of the important issues in evaluating the perfor-
mance of any artifact detection or removal method is
that there is no universal standard quantitative metric
for the researchers to use. Most of the methods men-
tioned in the literature use some qualitative time/frequency
domain plot to evaluate the artifact removal performance
or evaluated by the clinical expert. Sweeney et al. [92]
proposed a recording methodology for accurate evalua-
tion and comparison between different artifact removal
techniques/algorithms which presented the EEG recordings
of two separate but highly-correlated channels that allow
recording both artifact-contaminated and artifact-free sig-
nal simultaneously. It also presented a tagging algorithm
employing two accelerometers for generating a quality-of-
signal (QOS) metric, which can be used to for multiple
purposes such as classification of motion artifacts, activation
of artifact removal technique only when required and iden-
tification of the artifact-contaminated epochs. Thus, this
approach can provide accurate measurements of quantita-
tive metrics for fair performance evaluation.

However, such methodology still requires intervention to
the recording technique and also extra reference channel
for accelerometer data, which may not be feasible in every
application (e.g. portable EEG recordings). Although it is
highly encouraged for the removal performance to be evalu-
ated by the domain experts, however, such evaluation varies
from one expert to another and still is manual and/or qual-
itative evaluation. Therefore, it is an urge to have a single
standard evaluation method consists of both qualitative and
more importantly quantitative metrics or ways for evaluat-
ing the performance in a more realistic and fair manner.

Ground truth data
Another reason of not being able to evaluate artifact
removal performance fairly is that the lack of availability
of ground truth data. It’s now equally important to have
a public database with sufficiently long-term EEG recor-
dings without or minimal artifacts to be used as a ground
truth data. Besides such, an acceptable mathematical model
to generate basic EEG rhythms and finally integrate them
to simulate an EEG sequence with standard 10—20 system
EEG channels is required for quantitative evaluation of any
existing/future artifact removal methods. In addition, more
study is necessary to characterize as much as possible of all
artifact types, specially the motion artifacts for different

movement in an ambulatory environment [15]. Thus, it will
be easier to label both ground truth EEG and artifacts.

Recommendation
In order to choose the right artifact handling method, we
need to consider the particular application, required spec-
ification to be satisfied given the computational resources
and recording environment available. There are EEG appli-
cations where only one or two types of artifacts affect the
later stage information decoding or processing, thus it is not
wise to attempt to identify and remove all the artifacts as
other artifacts may not (or minimally) harm a particular sig-
nal processing purpose. If any reference channel is available
in the targeted application, then regression or adaptive fil-
tering technique may be a preferred solution. In the case
of ambulatory EEG monitoring, when number of channels
are fewer, no reference channel is available and wireless
EEG transfer preferred, in such case it is recommended to
use computationally cheaper method that can work without
reference and on single or few channels, e.g. wavelet-based
methods since BSS-based methods may not perform satisfac-
tory with less number of channels. In some applications, if
it is possible to have some a priori knowledge about arti-
facts and some training data available, and the application
only require to identify artifacts not to remove them, then
machine learning based classifiers can be good choice. If the
EEG recording involves high-density channels, then PCA may
be preferred to reduce the dimensionality before applying
any artifact removal methods, such as BSS-based methods.
If the application is based on offline analysis, then we can
afford some computational expensive techniques such as ICA
or EMD.

Conclusions

An extensive analysis of the existing methods for arti-
fact detection and removal has been presented with their
comparison, advantages and limitations. The research on
handling artifacts present in the typical EEG recordings is
still an active area of research and none of the existing
methods can be considered as the perfect solution. Most
of the solutions do not consider the particular application,
therefore, not optimized for that application. Although,
most of the removal algorithms provide good performance,
however, they are only suitable for offline analysis because
of their high computational complexity and unsupervised
nature. Some of them even require a dedicated reference
channel, which is not feasible for some applications. Fur-
ther studies are required to characterize the properties of
commonly encountered artifacts and to observe the effects
of their contamination to the desired later stage signal
processing/analysis. Some applications may only require to
identify artifacts and not to remove them, e.g. in appli-
cations where classification/identification of two classes
are required. In such cases, a more realistic mathematical
model of the desired event(s) to be identified is essential in
order to easily ignore other non-brain signals (i.e. artifacts
or interferences). Finally, the future direction will be to
provide application-specific solutions with reasonable com-
plexity, optimized performance and most importantly with
feasible solutions.
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Appendix A. Statistical features

Time Domain Features

Entropy, H: is a measure of uncertainty of information
content [78], of a discrete random variable x with possible
values x1, ..., xn, can be calculated as:

H(x) = E[− ln(P(x))] (8)

Here E is the expected value operator and P(x) is the
probability mass function of x.

Kurtosis, Kr: Kurtosis is the measure of ‘‘peakedness’’ of
probability distribution function [50] and is calculated for a
real-valued random variable x as follows

Kr[x] = �4

�4
(9)

where � and � are the mean and standard deviation of ran-
dom variable x.

Line Length, L[n]: Line length, a signal feature for
seizure onset detection as reported by [24,59], for a discrete
time signal x[k] can be represented by,

L[n] =
n∑

k=n−N
abs[x[k − 1] − x[k]] (10)

where N is the time window length. Here N = 1 sec.
Maximum, M: It is the maximum or peak value of an

epoch and noted down as a feature.
NEO, � : The ability of Non-linear Energy Operator (NEO)

to enhance signal’s transition or large amplitude event
[53,57,75] is sometimes considered as feature for seizure
classification. The NEO operator � applied to a discrete time
variable x[n] is calculated as follows

� [x[n]] = x[n]2 − x[n+ 1]x[n− 1] (11)

Usually the mean and/or variance of � [x[n]] for each
epoch are used as feature(s).

Frequency Domain Features

Spectral features along with temporal or spatial features are
often used for EEG classification. As mentioned before, EEG
rhythms have different spectral bands, therefore sometimes
the relative power in those bands are used as features for
classifier training. It is important to note that apart from the

rhythms, there are recently reported High Frequency Oscil-
lations (HFO having band of 80—200 Hz), Ripple (200—600 Hz)
bands present in EEG. In addition, the frequency band of typ-
ical Scalp EEG is 0.05—128 Hz while epileptic seizure appears
in 0.5—29 Hz [26]. These bands and their FFT or spectral
power are useful features for separating artifacts from EEG.

FFT, F: Fast Fourier Transform or FFT is the frequency
representation of time domain signal values. For feature
extraction, we have used the mean of the absolute of FFT
values for each epoch computed over the entire frequency
range of EEG signal (i.e. 0—128 Hz).

F = mean(abs[FFT(k)]) (12)

Maximum FFT, Fmax: This feature is the maximum or peak
value of the absolute of FFT values.

Fmax = max(abs[FFT(k)]) (13)

Spatial Features

Spatial distribution or topographic mapping helps to iden-
tify the origin of many artifacts (e.g. ocular artifacts are
dominant in frontal EEG channels) [93]. In addition, some
artifacts may appear in several nearby channels (global arti-
facts such as eye blink) where some appear only in one
channel (i.e. local artifacts). Therefore, spatial features
along with their spectral content are important to identify
artifacts from EEG signals [57,88].

Appendix B. Software plug-ins

FORCe

Fully Online and automated artifact Removal for brain-
Computer interfacing or FORCe is the most recent method
reported in [18] that is based on a unique combination of
WT, ICA and thresholding. Compared with two other state-
of-the-art methods namely LAMIC and FASTER, FORCe has
been shown to outperform them significantly and is capa-
ble of removing different types of artifacts including eye
blink, EOG and EMG. One of salient features of FORCe is
that it doesn’t require any reference channel and can oper-
ate on fewer numbers of channels which makes it suitable
for ambulatory EEG applications.

FASTER

FASTER stands for Fully Automated Statistical Thresholding
for EEG artifact Rejection which is an unsupervised algo-
rithm for parameter estimation in both EEG time series and
in the ICs of EEG [66]. The achieved sensitivity and speci-
ficity is > 90% for detection of EOG and EMG artifacts, linear
trends and white noise in the contaminated channels.

LAMIC

Lagged auto-mutual information clustering (LAMIC) is a clus-
tering algorithm developed for automatic artifact removal
from EEG [64]. The method involves data decomposition
by a BSS algorithm called TDSEP (Temporal De-correlation
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source SEParation), which is a temporal extension of ICA.
Then the components are clustered using the similarity of
their lagged Auto-Mutual Information (AMI). This is inspired
from the fact that EEG and artifacts are different from their
temporal dynamics point of view. The clustering procedure
follows the usual steps of hierarchical clustering.

PureEEG

This is an automatic EEG artifact removal algorithm for
epilepsy monitoring that based on a neurophysiological
model by utilizing an iterative Bayesian estimation scheme
[35]. The method targets to remove most of the artifact
types and does not require any manual intervention. The
authors reported the performance of PureEEG from two
independent clinical experts perspective and its found to
be significantly improving the readability of EEG recordings
after artifact removal.

OSET

OSET is an Open-Source Electrophysiological Toolbox for
biomedical signal generation, modeling, processing, and
filtering [80]. It can remove cardiac artifacts from any
bioelectrical signal including EEG. It can also handle and
remove EOG artifacts from multi-channel EEG using tech-
niques based on semi-blind source separation.

MARA

Multiple Artifact Rejection Algorithm (MARA) is an open-
source MATLAB-based EEGLAB2 plug-in which automatically
identify the artifact-contaminated independent compo-
nents for artifact rejection [103,104]. The main part of
MARA is a supervised machine learning algorithm that learns
from labeled components by experts and utilizes six fea-
tures based on spatial, spectral and temporal domain. It can
handle any type of artifact.

AAR

Automatic Artifact Removal (AAR), a MATLAB toolbox which
can be integrated as a plug-in into EEGLAB, includes dif-
ferent artifact removal methods for removing only EOG
and EMG artifacts [29]. In order to remove only EOG arti-
facts, regression-based methods such as least mean squares
(LMS), conventional re-cursive least squares (CRLS), sta-
ble re-cursive least squares (SRLS) and algorithms based
on the H norm are used. For removing both EOG and
EMG artifacts, spatial filters based techniques have been
adopted.

2 EEGLAB is an open-source MATLAB-based interactive GUI toolbox
for analyzing and processing continuous and event-related EEG, MEG
and other electrophysiological signals. It uses ICA, time-frequency
analysis, artifact rejection, event-related statistics and different
modes for visualizing the averaged or single-trial EEG data [22].

ADJUST

ADJUST, reported by Mognon et al. [57], is an EEGLab sup-
ported plug-in for automated EEG artifact detection. This
algorithm is based on the combined use of stereotyped
artifact-specific spatial and temporal features to automat-
ically identify the artifactual ICs after ICA is performed.
Four different artifact types (i.e. eye blink, vertical eye
movement, horizontal eye movement and generic disconti-
nuities) are chosen for extracting features such as temporal
kurtosis, spatial average and variance difference, maximum
epoch variance, spatial eye difference. The key feature of
ADJUST is that it is entirely automated and unsupervised
with reported accuracy of 95.2% in classifying all of the four
artifacts. It can also successfully reconstruct the clean ERP
topographies from heavy artifact-contamination.

PREP Pipeline

The PREP pipeline is a standardized preprocessing tool for
large-scale EEG analysis [7], which includes an automatically
generated report for each dataset processed. The salient
features of this toolbox include (i) removal of line-noise
without incorporating typical filtering technique, (ii) ref-
erencing the signal robustly, and (iii) identification of bad
channels relative to the reference.

Makoto’s Preprocessing Pipeline

This pipeline is Makoto Miyaksohi’s personally recom-
mended EEG preprocess pipeline [30], which is a forever
beta version. Interested readers are requested to con-
sult the following link for more details: [http://sccn.ucsd. Q6

edu/wiki/Makoto’s preprocessing pipeline].

FieldTrip

This is an open-source MATLAB toolbox for MEG and EEG
analysis which offers advanced analysis methods of MEG,
EEG, and invasive electrophysiological data, such as time-
frequency analysis, source reconstruction using dipoles,
distributed sources and beamformers and non-parametric
statistical testing [69].

ERPLAB

ERPLAB is also EEGLAB-compatible open-source toolbox for
analyzing ERP data, which has artifact rejection capability
in both manual and automated manner [47].
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