
Independent University Bangladesh (IUB)

IUB Academic Repository

Electrical and Electronics Engineering Article

2016

A Self-Organizing Diffusion Mobile

Adaptive Network for Pursuing a Target

Rastegarnia, Amir

Scientific & Academic Publishing

http://dir.iub.edu.bd:8180/handle/123456789/265

Downloaded from IUB Academic Repository



American Journal of Signal Processing 2016, 6(2): 25-31 
DOI: 10.5923/j.ajsp.20160602.01 

A Self-Organizing Diffusion Mobile Adaptive Network 
for Pursuing a Target 

Amir Rastegarnia1,*, Azam Khalili1, Md Kafiul Islam2 

1Department of Electrical Engineering, University of Malayer, Malayer, Iran 
2Department of Electrical and Computer Engineering, National University of Singapore, Singapore 

 

Abstract  In this paper we focus on designing self-organizing diffusion mobile adaptive networks where the individual 
agents are allowed to move in pursuit of an target. The well-known Adapt-then-Combine (ATC) algorithm is already 
available in the literature as a useful distributed diffusion-based adaptive learning network. However, in the ATC diffusion 
algorithm, fixed step sizes are used in the update equations for velocity vectors and location vectors. When the nodes are too 
far away from the target, such strategies may require large number of iterations to reach the target. To address this issue, we 
suggest two modifications on the ATC mobile adaptive network to improve its performance. The proposed modifications 
include (i) distance-based variable step size adjustment at diffusion algorithms to update velocity vectors and location vectors, 
(ii) to use a selective cooperation, by choosing the best nodes at every iteration, to reduce the number of communications. The 
performance of the proposed algorithm is evaluated by simulation tests where the obtained results show the superior 
performance of the proposed algorithm in comparison with the available ATC mobile adaptive network.  
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1. Introduction 
Wireless sensor networks appear in many practical 

applications such as distributed sensing, intrusion detection 
and target localization [1-4]. In most of the aforementioned 
applications, nodes of a network collect data from 
environment and then process them collaboratively to 
estimate a desired parameter. Different strategies have been 
introduced in the literature to solve the distributed 
estimation problems including consensus strategies and 
adaptive networks [5, 6]. It has been shown in [7] that 
adaptive networks are more stable than consensus networks 
and they provide better steady-state error performance. So, 
in this paper we focus on adaptive network based solutions. 
We adopt the term adaptive networks from [8] to refer to a 
collection of nodes that interact with each other and 
function as a single adaptive entity that is able to track 
statistical variations of data in real-time.  

Two major classes of adaptive networks are incremental 
strategy [9-14] and diffusion strategy [15-19]. In 
comparison, incremental algorithms require less 
communication among nodes of the networks while 
diffusion algorithms are scalable and more robust to link 
and node failure [20-22].  

In general, diffusion based algorithms consist of two  
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steps including the adaptation step, where the node updates 
the weight estimate using local measurement data, and the 
combination step where the information from the 
neighbours are aggregated. Based on the order of these two 
steps, diffusion algorithms can be categorized into two 
classes known as the Combine-then-Adapt and 
Adapt-then-Combine (ATC). It is observed that the ATC 
version of diffusion LMS outperforms the CTA algorithm 
[16]. The initial diffusion adaptive networks in [15-19] did 
not incorporate the node mobility. In [23-26], another 
dimension of complexity which is node mobility has been 
added to the diffusion networks. The resultant mobile 
adaptive networks perform two diffusion-based estimation 
tasks: one for estimating the location of a target and the other 
one for tracking the center of mass of the network. 
Incorporating the node mobility enables the resulting 
diffusion networks to use them in new applications such as 
modelling the various forms of sophisticated behaviour 
exhibited by biological networks [27, 28] and source 
localization [29, 30]. 

The current algorithms for mobile adaptive networks do 
not consider the distance to the target in their adaptation 
mechanisms. In other words, in the current algorithms every 
node in the network adjusts (updates) its velocity vector and 
location vector regardless of its distance to the target. When 
nodes are too far away from the target, such strategies may 
require large number of iterations to reach the target, which 
in turn, requires large amount of communications and 
computations. Thus, it is highly desirable that in a mobile 
adaptive network, the nodes incorporate the distance to the 
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target information, e.g. using bigger step-sizes when they are 
too far from the target. To endow the ATC diffusion network 
with such ability, we firstly define a practical metric to 
describe the far field region as a region that is too far from 
the target. Note that the near filed is also defined as a region 
that includes the target. Then, according to the position of a 
node (inside or outside of the far field) different step size 
adjust mechanisms are applied. In general, as long as a node 
is inside the far field region, the step size parameter in update 
velocity vectors and location vectors are increased, whereas 
for a node outside of the far field the step size is iteratively 
reduced as it moves toward the target. 

Moreover, in the combination step of diffusion LMS 
algorithm, each node needs to gather the intermediate 
estimates from all of its neighbours. Thus, this step may 
require large amount of communications for dense networks. 
In some applications, however, networks cannot afford large 
communication overhead. To further reduce the 
communication load, a selective cooperation is used where 
every nodes selects only a subset of its niobous to share the 
information. The performance of the proposed algorithm is 
evaluated by simulation tests where the obtained results 
show the superior performance of the proposed algorithm in 
comparison with the available ATC adaptive network. 

Notation: We use boldface letters for matrices and vectors 
and small letters for scalars. The notation 2|| || ∗=x x x  
stands for the Euclidean norm of x . E  denotes the 
expectation operator. The set of neighbours of node k , 
including itself, is denoted by k .  

2. Mobile Adaptive Networks 
Let us consider a network with N  mobile nodes that are 

randomly distributed over a space. Let ,k ix  be the location 

of node k  at time i , relative to some global coordinate 

system and 3o ∈w   denote the location of the target. 
Each node k  finds its neighbours within a range R  
radius in each time i , i.e. 

, ,if || ||k j i k ij R∈ − ≤x x         (1) 

The objectives of each node in the network are (i) to 
estimate the position of the desired target and move towards 
it in coherence and synchrony with the other nodes, and (ii), 
avoid possible collisions by keeping a certain distance, say 
r  from neighbours during the motion to the target location. 
The distance between the target ow  and a node k  at any 
time i  is given by (See Fig. 1) 

, , ,( )o o
k i k i k id = −u w x              (2) 

where ,k iu  denotes the direction of the target including the 

azimuth angle ,k iθ , and the elevation angle ,k iϕ  which is 
given as 

, , , , , ,[cos( )cos( ) sin( )cos( ) sin( )]k i k i k i k i k i k iθ ϕ θ ϕ ϕ=u  (3) 

We assume that each node observes a noisy measurement 
of the distance to the target, via a linear model as follows 

, , , ,( )n o
k i k i k i k id n= − +u w x         (4) 

 

Figure 1.  Distance and direction of the target 
ow  from node k  at 

location ,k ix  

where ,k in  denotes the noise term which is assumed to be 
zero-mean Gaussian noise. Intuitively, the noise variance, 

2
, ( )n k iσ  can follow a relation such as 

2 2
, ,( ) o

n k k iiσ κ≈ −x w‖ ‖          (5) 

We select 0.01κ =  as [23]. Note that (5) is reasonable 
since we usually assume the signal power to decrease in 
proportional to the square of the propagation distance. We 
can rewrite the above equation as [23, 25] 

, , , , , ,
n o

k i k i k i k i k i k id d n= + = +u x u w      (6) 

At every time instant i , every node k  has access to 
local data , ,{ , }k i k id u  and the local data from its 
neighbours. Using these data every node estimates the 
position of the target at ow  which can be achieved by 
solving the following optimization problem 

2
, ,

1
arg min ( )

N

k i k i
k

E d
=

 −  ∑w u w        (7) 

The ATC diffusion algorithm has been developed for 
solving (7) in a distributed manner. The ATC algorithm 
consists of two steps: adaptation and combination. In 
adaptation step, node k  uses its own data to update the 
weight estimate , 1k i−w  to intermediate value ,k im . In the 
combination step each node gathers the intermediate 
estimates ,{ },i k∈m



   combines them to obtain the 

updated weight estimate ,k iw . The algorithm is described as 
follows: 
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( ), , 1 , , , , , 1
k

w T
k i k i k k i i i k i

N
c dµ− −

∈

= + −∑m w u u w
   



  (8) 

, , ,
k

w
k i k i

N
a

∈

= ∑w m
 



             (9) 

where kµ  is the learning step size. The two sets of 

non-negative real coefficients ,{ }w
kc



 and ,{ }w
ka



 satisfy 

 , , , ,
1 1

1, 0,
N N

w w w w
k k k k kc a c a

= =

= = = = ∉∑ ∑
   

 

    (10) 

In a network of mobile nodes, every node k  can update 
its location as 

 , , 1 ,k i k i k i t−= + ∆x x v           (11) 

where t∆  is the time step and , 1k i+v  denoted the velocity 

of the node k . Every node adjusts its velocity vector 
according to the following expression [23] 

 

, 1 , 1
, 1 2 , 1

, 1 , 1

, ,
3 \{ } , ,

, ,

   

( )
k

k i k i g
k i k i

k i k i

l i k i
l k l i k i

l i k i
r

ξ ξ

ξ

− −
−

− −

∈

−
= +

−

−
+ − −

−
∑

w x
v v

w x

x x
x x

x x
‖ ‖

‖ ‖


(12) 

where 1ξ , 2ξ  and 3ξ  are non-negative weighting factors, 

and ,
g
k iv  is the local estimate for the global velocity of the 

center of gravity of the network which is designed to allow 
for coherent motion. To use (12) each node needs to estimate 

,
g
k iv

 
in a distributed way. Since the velocities of nodes are 

changing in time, we need to keep track of ,
g
k iv over time. 

So we introduce the global cost function as follows 

 
2

,
1

arg min ( )g

N
g

k i
k

E
=

 −  ∑v
v v       (13) 

Similar to (8) we can arrive at the following diffusion 
algorithm for estimating ,

g
k iv  

 ( ), , 1 , , , 1
k

g v g
k i k i k k i k i

N
cδ− −

∈

= + −∑s v v v
 



    (14) 

 , , , =
k

g v
k i k i

N
a

∈
∑v s

 



             (15) 

where kδ  is a positive step size and ,{ }v
kc



 and ,{ }v
ka



  
are two sets of non-negative real coefficients satisfying the 
same properties as (10). 

3. Proposed Algorithm 
3.1. Motivation for Current Work 

In the existing algorithms for adaptive mobile networks, 

there is no specific strategy for going faster toward the target. 
In other words, in the existing algorithms although the 
algorithm is designed in such a way that the set of nodes can 
move towards the goal harmoniously, but they do not 
consider the distance to the target in their velocity and 
location update equations. To address this issue, instead of 
using fixed learning parameter kµ  in (8), we use variable 
step-size parameter which has the following conditions 

●  if node k  at iteration i  is too far from the target, 

,k iµ  should be increased. Note that to prevent 
algorithm divergence and movement control of the 
set of nodes, we have to select the upper limit for 
step-size parameters. 

●  if distance of node k  at iteration i becomes less 
than a predefined value, ,k iµ

 
should be iteratively 

decreased as nodes approach the target. In this case 
we consider a lower bound for ,k iµ

 
to avoid slow 

convergence rate. 

3.2. Algorithm Development 

To begin with, we define the far field region as follows. 
Definition 1: By far field, we mean a region 3∈  

that the nodes inside it are far from the target, or 

 2
, ||| ,|o

k i s−w x              (16) 

To use (16), every node needs to have the target position 
ow  which is not available. To have a practical metric, we 

use ,k iw  as an estimate of ow  at iteration i  and rewrite  
(16) as 

 2
, ,| ,|| |k i k i s−w x 

 
          (17) 

For a node inside   (i.e. ,k i ∈x  ) a bigger step-size in 
the update equation is required to move in the direction of 

ow . So we replace ,k iµ
 

in (8) as follows 

 , , 1k i k iµ αµ −=               (18) 

with 1α > . Obviously, in this case we have , , 1k i k iµ µ −> . 
It should be noted that according to the recursive equation in 
(8), increasing the step size may lead to algorithm divergence. 
So, in order to avoid algorithm divergence we consider an 
upper bound for step sizes as 

 , 1 , 1 max
, ,

max , 1 max
(if )k i k i

k i k i
k i

αµ αµ µ
µ

µ αµ µ
− −

−

<
= ∈ ≥

x  (19) 

When ,k i ∉x   we need to reduce the step size as nodes 

moves toward the target at ow . In this case the step size 
adaptation function can be given by 

 2
, , 1 ( )k i k i ke iµ βµ γ−= +           (20) 

 



28 Amir Rastegarnia et al.:  A Self-Organizing Diffusion Mobile Adaptive Network for Pursuing a Target  
 

where , , 1 , 1( ) ( ) ( )k k k i k i k ie i d i − −= − −u w x . In this case 

,k iµ becomes smaller as node approaches the target. To 
avoid slow convergence rate, we can consider a lower bound 
for step size as follows 

2
, 1 , 1 min

, ,2
min , 1 min

( )
(if )

( )
k i k i k

k i k i
k i k

e i

e i

αµ βµ γ µ
µ

µ βµ γ µ
− −

−

 + >= ∉
+ ≤

x   (21) 

As mentioned in the introduction, in some applications, 
networks cannot afford large communication overhead due 
to energy consumption cost or bandwidth restrictions. In 
order to minimize the communication overhead for this 
application, we must introduce a new metric that considers 
only a subset of neighbours to consult at node k . To this 
end, we select neighbours of node k  that have small 

estimated variance product measure and ignore the other 
neighbours. One way is to change (1) as 

 2 2
, , , ,|| |if an| dk j i k i j i k ij R σ σ∈ − ≤ ≤x x   (22) 

Remark 1: To use (22) we need 2
,k iσ  which are 

unknown in general and for practical usage they must be 
estimated.  At every node k , 2

,k iσ
 

can be estimated by 
time-averaging as 

 2 2
, , 1 , , 1ˆ ˆ (1 )( ( ) )k i k i k k i k id iσ ησ η− −= + − −u w   (23) 

with a forgetting factor 0 1η< < . 
Finally, using the introduced modifications we arrive at 

the proposed algorithm as given in the Table. 1. 
 

Table 1.  Proposed Diffusion Mobile Adaptive Network with Selective Cooperation 

Every node k  in the network performs the following steps for 0i > . 

The node has access to the local data 
2

, , ,{ ( ), , , }k k i k i n kd i σu v   

If 
2

, ,|| ||k i k i s−w x   then 

 , 1 , 1 max
, ,

max , 1 max

(if )
k i k i

k i k i
k i

αµ αµ µ
µ

µ αµ µ

− −

−

<
= ∈

≥





x 

 
2

, 1 , 1 min
, ,2

min , 1 min

( )
(if )

( )

k i k i k
k i k i

k i k

e i

e i

αµ βµ γ µ
µ

µ βµ γ µ

− −

−

+ >
= ∉

+ ≤





x    

Use (22) to find set of neighbour nodes of every node k  (i.e. ,k i )  
Compute the following local adaptation and criterion 

 

( )

( )

, , 1 , , , , , 1

, , 1 , , , 1

k

k

w T
k i k i k k i i i k i

N

g v g
k i k i k k i k i

N

c d

c

µ

δ

− −
∈

− −
∈

= + −

= + −

∑

∑

m w u u w

s v v v

   



 



  

Perform two local combination steps using data from selected neighbours 

 , , , , , ,

k k

w g v
k i k i k i k i

N N

a a
∈ ∈

= =∑ ∑w m v s
   

 

  

Update the node velocity and its location 

, 1 , 1
, 1 2 , 1

, 1 , 1

, ,
3 \{ } , ,

, ,

, , 1 ,

(| ||
|

| )
|| |k

k i k i g
k i k i

k i k i

l i k i
l k l i k i

l i k i

k i k i k i

r

t

ξ ξ

ξ

− −
−

− −

∈

−

−
= +

−

−
+ − −

−

= + ∆

∑

w x
v v

w x

x x
x x

x x

x x v


  

As i evolves we have , ,, 0
o

k i k i≈ ≈w w v  
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4. Simulation Results 
In this section we present simulation results to evaluate the 

performance of our proposed algorithm. We use a network 
with 50N =  nodes that are initially uniformly distributed 
inside a cube with length 10. Their velocities are set at 
random directions and unit magnitude. The simulation 
parameters are set as follows. The factors of velocity control 
are 1 0.8ξ = , 2 0.5ξ = , 2 0.8ξ = . We further set

0.85, 0.001β γ= = . The combination coefficients are set 

as , , , , 1/ | ( ) |w v w v
l k l k l k l k ka a c c i= = = =   if ( )kl i∈ . 

We set the time duration to 0.5t∆ =  and 0.5δ= . 
Moreover, optimal distance between two neighbours is set to

2r = . A node chooses nearest neighbours from neighbours 
within the radius 6R = . The observation noise ( )kn i  is 
assumed to be zero-mean Gaussian noise which is given by 
(5). 

 

Figure 2.  Transient network MSD for estimating the target location at 

[120 120]o T=w  

Fig. 2 shows the network transient mean-square deviation 
(MSD) (for two different algorithms) which is defined as 

 2
,

1

1MSD [| ]|| |
N

o
i k i

k
E

N =

= −∑ w w      (24) 

In the following, we compare the performance of the 
proposed algorithm with the ATC algorithm given in [25]. 
Note that for the ATC algorithm each node cooperates with 
fixed number of its nearest neighbours at every iteration 
( , 4k i = ). Moreover, each node uses fixed step-size 

0.5kµ =  at every iteration. Fig. 2 shows the transient 
network MSD for estimating the target location at 

[120120]o T=w . These curves are averaged over 50 
experiments with the same initial state of , 1k −w  for all k . 
We observe that for both algorithms the transient MSD 
decreases dramatically in the first phase, then the network 
moves towards the target and finally, at steady state, the 

network arrives at the target. However, the proposed 
algorithm provides better performance compared to the ATC 
diffusion algorithm. Fig. 3 illustrates the maneuver of a 
mobile network (with ATC and proposed algorithms) over 
time.  

 

Figure 3.  Maneuvers of mobile networks (with the ATC and the proposed 
algorithms) over time. (a) 1i = , (b) 50i = , (c) 150i = , and (d) 

300i = . Note that * and •  indicates the locations and moving directions 
of the nodes with ATC, proposed algorithm respectively and   denotes 
the location of the target 

 

Figure 4.  The network average step size ,k iµ  over iteration 

We observe that both algorithms exhibits harmonious 
movement, but the proposed algorithm moves faster to the 
target. Fig. 4 shows how the network average step size, i.e. 

, ,
1

1 N

k i k i
kN

µ µ
=

= ∑  

evolves over time. We can see that at the first iteration since 
the nodes are too far from the target, at every node the step 
size parameter has been increased iteratively so that after 
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some iterations we have , maxk iµ µ= . As the nodes move 
toward the target, at every node the step size parameter has 
been decreased iteratively.   

Fig. 5 shows the average number of neighbours for every 
node. Note that for the ATC algorithm we have , 4k i =  
(according to our simulation setup) while the proposed 
algorithm uses small number of neighbours which means it 
requires less communication load. 

 

Figure 5.  The average number of neighbours for every node 

5. Conclusions 
In this paper we proposed a modified ATC diffusion 

algorithm for mobile adaptive networks where the individual 
agents are allowed to move in pursuit of a target. The 
motivation was that in the ATC algorithm fixed step sizes are 
used in the update equations for velocity vectors and location 
vectors. When the nodes are too far away from the target, 
such strategies may require large number of iterations to 
reach the target. To address this issue, in the proposed 
algorithm we used distance-based variable step sizes for 
adjustment at diffusion algorithms to update velocity vectors 
and location vectors. We also used a selective cooperation 
where only a subset of nodes at each iteration is used to share 
information. The performance of the proposed algorithm was 
evaluated by simulation tests where the obtained results 
showed the superior performance of the proposed algorithm 
in comparison with the available ATC mobile adaptive 
network. In our future work we will develop diffusion 
mobile adaptive network for pursuing multiple targets.  
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