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Summary

Extracellularly recorded neural data from in-vivo experiments provide

higher spatio-temporal resolution and SNR compared with non-invasive

brain signal recordings. While the recorded data can be corrupted by arti-

facts, especially under a less constrained recording protocol, the detection

and removal of artifacts as a part of neural signal preprocessing procedure

without distorting the signal-of-interest, play an important role. However,

due to very limited knowledge of the appeared artifacts and the broad spec-

tral content of in-vivo neural data, it is difficult to apply available artifact

removal algorithms directly on in-vivo neural recordings and thus poses a

great challenge to decode the underlying brain information properly. The

first objective of this thesis is to investigate the artifacts usually found in

the in-vivo neural recordings and then characterize them in a systematic

way (first ever attempt to the best of our knowledge). Our second objec-

tive is to develop an algorithm for automatic artifact detection and removal

without distorting the signals of interest.

Apart from in-vivo neural recordings, EEG has been the most pre-

ferred way of brain recordings in clinical studies, lab experiments, patient



vii

health monitoring, diagnosis and many other applications due to its non-

invasiveness and affordability benefits . In scalp EEG-based applications,

as the electrodes are placed on the scalp, become most prone to external

artifacts including physiological ones. Consequently artifact detection and

removal also from EEG recordings become one of the most faced challenges

and therefore an active research problem in EEG signal processing commu-

nity. Many attempts have been made till now to develop suitable methods

for artifact detection and removal with the help of recent advancement in

signal processing techniques and algorithms. However, each of them lacks

from some practical issues and there is no complete solution yet which

indicates the future need for removal algorithms to be more application-

specific; e.g. in brain-computer interface (BCI) or epilepsy seizure detection

applications. This research gap motivates us to design artifact removal al-

gorithms for two of the most popularly used EEG-based applications i.e.

epilepsy seizure monitoring and BCI studies. The proposed EEG artifact

reduction methods are automatic, independent of artifact types, do not re-

quire a reference channel, can work for both single and multi channels and

most importantly application-specific.

In order to evaluate the proposed methods quantitatively in comparison

with available state-of-the-art methods, different artifact types have been

extracted from real recordings for simulating artifact templates and hence

to build a synthesized neural database on which the methods are applied.

Extensive testing shows that the proposed algorithms can remove around
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50 − 80% of artifacts on average which correspond to SNR increment of

about 10 − 15 dB without almost no distortion to signal of interest and

outperform the counterpart methods with a large margin. In addition,

the effects of artifact removal on the later-stage processing have also been

evaluated that result in significant performance improvement in terms of

neural spike detection, seizure detection and BCI classification which proofs

the efficacy of the proposed methods. Thus this work is expected to provide

a useful platform in neural signal analysis and processing area for future

brain research.
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Chapter 1

Introduction

This chapter introduces the background of the current study by de-

scribing both invasive and non-invasive neural signals at first, followed by

the motivation of this thesis by describing the challenges faced during pre-

processing of these neural data due to artifacts and the limitations of the

existing methods to handle the issues. Then the objectives of this thesis

are presented. Finally the chapter introduction and contributions of each

chapter are presented.

1.1 Background

1.1.1 In-Vivo Neural Recording

Extracellular neural data recorded from awake behaving animals can be

used to investigate brain information processing and data storage (e.g.

how memory works). Recently, due to the advancement in new record-
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Interconnect 
Cable

Figure 1.1: A typical experimental set-up for in-vivo extracellular neural
recording of spontaneous neural activity from a freely moving subject.

ing technologies and computational power, in-vivo neural recording exper-

iments on such freely behaving animals have been possible that provide

a greater means to directly relate neural activity to behavior than in the

intact animal or in-vitro recordings. Besides, such recorded extracellu-

lar in-vivo neural signals provide better spatio-temporal resolution than

other recording techniques of brain signals, e.g. EEG, MEG, fMRI, fNIRS

[1, 2, 3, 4, 5, 6]. However, during such behavioral experiments, especially

in less constrained environment, the recorded neural data are severely cor-

rupted by various environment and recording artifacts, mostly due to the

random movement of subject (as shown in Figure 1.1). Artifacts in neural

recordings can be defined as some abnormal activities that originate from

sources other than brain. In general, the appeared artifacts in the recorded

neural data saturate the recording electronics and cause serious mistake in

interpretation of recorded neural information [7]. Hence as a part of neural
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data preprocessing procedure, the detection and removal of such offending

artifacts without distorting the signal of interest, play an important role

for proper processing of neural signals in the subsequent stages to decode

the neural information accurately. In order to develop a complete neural

processing system (e.g. open-loop system in basic neuroscience research or

closed-loop in neural prostheses or invasive brain-computer interface (BCI))

that works in real-time (required for closed-loop system, although for basic

neuroscience studies offline processing is enough), an automatic algorithm

which is able to detect and remove artifacts on-the-fly, implemented in an

on-chip neural signal processor integrated with the analog front-end cir-

cuitry, therefore is extremely necessary.

An example of such neural system is shown in Figure 1.2 where brain

signals, recorded using electrode array, are amplified by analog front-end

circuitry followed by digitization process by ADC. The post-ADC digital

signals are processed in two stages: Preprocessing where artifacts, interfer-

ences are removed and Neural Signal Processing where actual signal pro-

cessing and analysis are performed (e.g. spike detection/sorting). Finally

output of signal processing block is transmitted through a bidirectional

telemetry interface and then based on the decision, specific feedback in

terms of stimulation is provided either to the brain (e.g. epileptic seizure

suppression) or other parts of the body (e.g. muscle to control a prosthetic

hand) or sometimes to control an external device (e.g. mouse cursor, wheel

chair, etc.) depending on the application.
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Figure 1.2: A typical closed loop neural system for BCI or neural prostheses
applications.

In-Vivo neural signal recorded from extracellular space consists of both

fast action potentials and slow field potentials and usually has a wide dy-

namic range starting from few µV up to few mV [6]. The amplitude of

extracellular action potentials (spikes) can vary depending on the recording

site from the soma as the spike amplitude decreases rapidly with distance

from soma [6]. The variation can be from as low as 0.1 µV (recording site

is about 300 µm away from soma) up to as high as 100 µV (if recording

electrode tip is closest to soma). While in other literatures it is mentioned

that the dynamic range of extracellular action potentials is approximately

between 20 µV to 5 mV [8]. Moreover, very often such recording is severely

corrupted by different types of artifacts and interferences especially in less

constrained recording environment, e.g. experiments with behaving ani-

mals. These offending artifacts not only misinterpret the original neural

recordings but also sometimes saturate the recording electronics due to
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their large magnitudes compared to neural signal of interest.

1.1.1.1 Single and Multi-Unit Recording (Spikes)

An electrode implanted into the brain of a living animal will detect electrical

activity that is generated by the neurons adjacent to the electrode tip. If

it is a micro-electrode, with a tip size of about 1 µm, the electrode will

usually detect the activity of at most one neuron. Recording in this way is

in general called ’single-unit’ recording [9]. An action potential or spike is

a short-lasting event in which the electrical membrane potential of neuron

rapidly rises and falls, following a consistent trajectory. The extracellular

action potentials are much smaller in amplitude (typically about 100 µV

to 1 mV) compared to intracellular recording [9]. Most recordings of the

activity of single neurons in anesthetized and conscious animals are made

in this way. Recordings of single neurons in living animals have provided

important insights into how the brain processes information. For example,

David Hubel and Torsten Wiesel recorded the activity of single neurons in

the primary visual cortex of the anesthetized cat, and showed how a single

neuron in this area responds to very specific features of a visual stimulus

[10, 11]. If the electrode tip is slightly larger, then the electrode might

record the activity generated by several neurons. This type of recording is

often called ”multi-unit recording”, and is often used in conscious animals

to record changes in the activity in a discrete brain area during normal

activity. Recordings from one or more such electrodes that are closely
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(a)
(b)

Figure 1.3: Illustration of an idealized intracellular action potential shows
its various phases as the action potential passes a point on a cell membrane
(a). A schematic diagram showing a field potential recording in response
to a stimulus from rat hippocampus by an intracellular (1) and an extra-
cellular electrode (2) (b).

spaced can be used to identify the number of cells around it as well as

which of the spikes come from which cell. This process is called spike

sorting and is suitable in areas where there are identified types of cells with

well-defined spike characteristics. In general the activities of individual

neurons cannot be distinguished even if the electrode tip is large, rather

the electrode is still able to record a field potential generated by the activity

of many neural cells.

1.1.1.2 Local Field Potentials

Extracellular field potentials are local current sinks or sources that are gen-

erated by the collective activity of many neurons. Usually, a field potential

is generated by the simultaneous activation of many neurons by synaptic

transmission. Figure 1.3 (b) shows the recording of hippocampal synaptic

field potentials which is adopted from [9, 12].
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1.1.2 Electroencephalography (EEG)

Electroencephalography (EEG) is a non-invasive recording technique that

measures the electrical activity of brain by placing electrodes on the scalp.

It is the most commonly used brain recording technique for diagnosis of

different neurological disorders along with other applications such as brain-

computer interface. The EEG recordings are described in terms of rhythms

and transients. The rhythmic activity of EEG is divided into bands of fre-

quency. The most common EEG rhythms are Delta, Theta, Alpha and

Beta waves [13]. Recently a relatively high frequency Gamma wave comes

into EEG analysis in certain cases. On the other hand, artifacts are tran-

sient events, although epilepsy seizure events can also be transient but they

are more oscillatory than artifacts.

To provide a model for recorded raw EEG data, let’s denote the clean

EEG background activity/rhythm as Ec with weight wc; Artifact event as

ATn with weight wTn and time delay τTn; where n = 0, 1, ..., N denotes the

type of artifact. For example, if it’s a Type-1 artifact [7], then denoted

by AT1 with weight wT1 and time delay τT1. Now the recorded raw EEG

data, ER can be modeled as the linear combination of these two signal

components:

ER(t) = wcEc(t) +
N∑
n=1

wTnATn(t− τTn) (1.1)
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Figure 1.4: An illustration of EEG based epilepsy seizure monitoring and
detection. Adopted from [14].

1.2 Thesis Motivation

1.2.1 Artifact Removal from In-Vivo Neural Recording

Many literatures [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] are found

that propose various methods/algorithms to detect and remove artifacts in

physiological signals (e.g. EEG, ECG, EMG, PPG, fNIRS, fMRI, recording

of respiration), but there is hardly any literature found so far to the best

of our knowledge that considers artifacts present in in-vivo neural signals

except only one [28]. The artifact detection and removal for in-vivo neural

recorded signal is a more challenging task due to the following facts:
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1.2.1.1 The Signal and Artifact Characteristics

Many other physiological signal recordings mostly contain narrow-band

neural data (e.g. bandwidths of EEG, ECG, and EMG in general range

from sub Hz to no more than a few hundred Hz) while the in-vivo neural

recordings have a broad spectral band, i.e. from sub-1 Hz to several kHz.

Thus, spectral overlapping between artifacts and signals of interest for in-

vivo recordings is larger. Apart from the wide bandwidth, the presence

of different signal components (i.e. Local Field Potentials (LFP), neural

spikes, synaptic activities, etc.) and their highly non-stationary properties

[29, 30, 31, 32] compared with other recordings; make it more difficult for

identifying artifacts.

When dealing with other physiological signals, often the appeared ar-

tifacts have certain stereotype waveforms or the artifact source itself can

be recorded by a reference channel. This is not the case for in-vivo neural

recordings. In fact, as it will be discussed later, the diversity in artifact

types, their properties and the way they appear in the recordings make it

more challenging in separating them from neural signals.

1.2.1.2 Deficiency of Available Algorithms

Many available algorithms for artifact detection and removal cannot be

applied to in-vivo recordings. For example, a most frequent method to

detect and remove artifacts in EEG signals is based on blind source sepa-

ration (BSS), a technique for estimating/separating individual source com-
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ponents/signals from their mixtures at multiple sensors/channels (i.e. ob-

served signals) without knowing (or with very little information) about the

source signals or the mixing process. One assumption of BSS is that the

observations are linear mixing of the sources and the number of sources

is equal or less than the number of observations. Another assumption

is that the sources have to be either independent for Independent Com-

ponent Analysis (ICA) based methods [15, 16, 17, 18, 19, 20] or maxi-

mally uncorrelated for Canonical Correlation Analysis (CCA) based meth-

ods [33, 34, 35, 36]. However, the mentioned assumptions most often do

not match with the in-vivo neural recordings. For in-vivo neural data,

spiking activities from the same neuron mostly appear in one or few ad-

jacent channels, where in the rest of the channels, those activities merge

into the noise floor. Therefore, spikes cannot be separated as an indepen-

dent source if BSS-based algorithm is applied. Different from artifacts in

EEG, the artifacts found here are sometimes localized in a single channel,

which suggests that the cross-channel analysis cannot be directly applied.

Again there could be some correlation present between neural spikes and

Local Field Potentials (LFP) [6, 37] which violets the assumption of BSS

as mentioned. Although, there are available algorithms in the literature,

e.g. wavelet-based [24, 38, 39, 40] and Empirical Mode Decomposition

(EMD)/Hilbert-Huang Transform (HHT)-based [22, 23] algorithms to re-

move such localized artifacts from individual single channel and they do not

assume any independence/uncorrelation between sources unlike BSS. How-
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ever, during applying for in-vivo data, not only their performances are in-

adequate but also the computational burden can be heavy (e.g. EMD/HHT

based algorithms) [41].

1.2.2 Artifact Reduction from Scalp EEG

Artifact detection and reduction/removal is one of the most faced challenges

for neural information processing applications and is an open research prob-

lem. Especially in EEG-based health-care applications, the electrodes be-

ing placed on the scalp are most prone to artifacts and interferences. The

variety of artifacts and their overlapping with signal of interest in both

spectral and temporal domains, even sometimes in spatial domain, make

it difficult for simple signal preprocessing technique to identify them from

EEG. Therefore, the use of simple filtering or amplitude threshold to re-

move artifacts often results in poor performance both in terms of signal

distortion and artifact removal. The two major applications of Scalp-EEG

based systems are: 1) epilepsy seizure detection during long-term patient

monitoring and 2) in BCI experiments. In this thesis, we have proposed

two different methods for artifact removal from EEG for these two distinct

applications (i.e. seizure detection and BCI).

1.2.2.1 Artifact Reduction for Seizure Detection

long-term EEG recording (as shown in Figure 1.4) is used during epilepsy

patient monitoring for diagnosis of seizure. However, such recording is of-
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ten contaminated by different types of artifacts and hence the signal quality

gets degraded, as a result it can increase the false alarm during seizure de-

tection. This scenario gets worse when the patient monitoring is performed

under ambulatory environment where different types of movement-related

artifacts are present. Considering this problem, we propose a method to

reduce artifacts as much as possible without distorting the signal of interest

which is found to be enhancing the later stage seizure detection performance

significantly.

Although significant amount of efforts have been made to develop meth-

ods for artifact detection and removal in EEG applications, it is still an

active area of research. Most of them handle single type of artifact, many

of them cannot work for single-channel EEG, some of them require train-

ing data, some require a dedicated reference channel, some are designed for

general purpose applications that often leads to overcorrection of data and

some of them are not fully automated.

The proposed artifact reduction method for seizure detection applica-

tion is automatic, independent of artifact types, does not require a reference

channel, can work for both single and multi-channels and most importantly

application-specific (i.e. epilepsy diagnosis). The method uses stationary

wavelet transform with modified threshold parameters which relies on some

a-priori spectral information of seizure events. In order to separate seizure

from artifacts, it utilizes either a labeled real seizure epoch or a synthesized

one simulated from a simple seizure model. The foremost priority of the
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proposed method is to preserve the seizure events at all time and then to

reduce artifacts as much as possible.

1.2.2.2 Artifact Reduction for BCI Experiments

Brain-Computer Interface (BCI) is a promising technique to establish a

direct link between human brain and an external computerized device to

allow communications for the person suffering from brain/spinal cord re-

lated injury/disease [42]. EEG is the most popular among the brain record-

ing techniques in BCI research due to its mainly non-invasive nature along

with other attractive features such as fine temporal resolution, simple to

use, portability and lower cost [43]. In EEG-based BCI applications, the

EEG recording is often contaminated by different types of artifacts that can

misinterpret the BCI output. Although many attempts have been made to

develop suitable methods for EEG artifact detection and removal with the

help of recent advancement in signal processing techniques for algorithms;

however, there has no universal and complete solution been proposed yet

(e.g. some of them can only remove ocular artifacts, some of them re-

quire an additional reference channel whereas some of them cannot work

on single-channel, etc.) which indicates the future need for removal algo-

rithms to be application-specific such as brain-computer interface (BCI)

applications.

This thesis also presents a unique artifact detection method for BCI ap-

plication based on artifact probability mapping which quantifies an epoch



14

by a relative probability of being artifactual. This is achieved by con-

sidering the typical artifact characteristics in contrast to the background

EEG rhythms with the help of four statistical measures namely entropy

(measures the uncertainty), kurtosis (measures the peakedness), skewness

(measures the symmetry) and Periodic Waveform Index, PWI (measures

of periodicity). This unique probability mapping will allow the user to

decide whether to correct the epoch or to remain as it is by choosing an

appropriate probability threshold. Subsequently a removal method is also

proposed which is based on stationary wavelet transform based denoising

and relies on the desired spectral band of EEG rhythms in contrast to

spectral bands of different artifacts particularly for BCI applications. The

proposed method is demonstrated with both real and synthesized database

and extensive quantitative measures show the efficacy of this method with

obtained satisfactory results. Moreover, the proposed method is also com-

pared with some of state-of-the-art methods and proves its superiority over

others both in terms of performance and computational time. The effect of

artifact removal on real BCI database has also been demonstrated to show

that it can substantially improve the classifier accuracy in BCI experiments.

The above discussion clearly reveals that there is no artifact removal

method for in-vivo neural data. In addition, the available EEG artifact re-

moval methods have some practical limitations for applications like seizure

monitoring or BCI experiments. The current research gap in this very im-

portant signal preprocessing stage to reliably detect and remove artifacts
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from both invasive and non-invasive neural recordings mainly motivate the

study presented in the thesis.

1.3 Thesis Objectives

Based on the problem definition mentioned above, the aim of this thesis

is to provide methods for improving the quality of neural signals (both

in-vivo neural recordings and scalp EEG) which are widely used in basic

neuroscience studies, diagnosis of different neurological diseases (especially

epilepsy seizure) and modern BCIs (both invasive and non-invasive). Ac-

cordingly, the specific objectives of this thesis are as follows:

• Study of artifacts present at in-vivo neural recordings and character-

ize them in a systematic way.

• Analysis of the effects of artifacts on in-vivo neural signals and study

of the increased dynamic range due to artifacts for proper design of

analog front-end recording technology.

• Propose a reliable artifact detection and removal method for prepro-

cessing both in-vivo neural signal and scalp EEG.

• Observe the after-effects of artifact removal on later-stage signal pro-

cessing applications (e.g. spike detection, seizure detection and BCI

performance)



16

• Synthesis of an artifactual database for proper quantitative evalua-

tion of both artifact removal and the aftereffect of removal to neural

information processing. This is done in terms of neural spike detec-

tion accuracy and seizure classification performance.

1.4 Overview and Contributions

This section provides an overview of the organization of this thesis with its

original contributions. This thesis contains four chapters of contributions

and one chapter of extensive literature review on artifact removal from

EEG. In the beginning of each chapter, we provide a detailed literature

review of the topics discussed in that chapter.

1.4.1 Overview

In Chapter 2, we present a study of artifacts found in the in-vivo neural

recordings including their possible sources, types and properties. We also

provide the change in data dynamic range due to presence of such artifacts

which is useful for designing the analog front-end (e.g. resolution of ADC)

for recording the neural signals.

In Chapter 3, we present a detailed literature review on the existing

state-of-the-art artifact removal methods/algorithms from EEG recordings

by comparing their pros and cons along with their theoretical background.

Chapter 4 proposes an artifact detection and removal algorithm for

in-vivo neural recording which has been compared with existing artifact
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removal methods.

In Chapter 5, we introduce artifact removal method from scalp EEG for

epilepsy seizure monitoring application and validation of proposed method

by quantifying the performance metrics in comparison with some of the

state-of-the-art methods.

In Chapter 6, we present another artifact detection and removal method

from EEG for specifically BCI applications. The unique feature of this arti-

fact detection is that we proposed a probability-mapping of an EEG epoch

for being how much artifactual followed by user-dependent threshold selec-

tion scope for deciding whether the epoch should be denoised or not. This

method is also quantitatively evaluated in comparison with other existing

methods.

Finally, in Chapter 7, we summarize the results of the works presented

in this thesis. We also described some of the possible directions of research

that are left as open problems for future studies.

In addition to the main chapters, Appendix A.1 presents the open source

MATLABTM code of the artifact removal algorithm from in-vivo neural

signal and EEG signals. Appendix A.2 presents the synthesized artifactual

database with artifact templates to be able to download online for free.

1.4.2 Original Contributions

A summary of thesis contributions are discussed as follows:

• The thesis provides an investigation on the artifacts present in in-vivo
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neural signals for the very first time which includes: i) Identifying ar-

tifact sources, ii) Characterizing them into four different types, iii)

Studying the change in dynamic range due the presence of artifacts

in neural recordings, and iv) Observing the artifacts’ spectrum char-

acteristics in comparison with neural signal of interest.

• An artifact database has been synthesized in order to allow realistic

simulation of neural data contaminated with different artifact types

for quantitative performance evaluation of any artifact removal algo-

rithm/method.

• The thesis also proposes three different artifact detection and re-

moval algorithms for three different applications: one for in-vivo

neural recordings and two for EEG-based applications i.e. epilepsy

seizure detection and BCI studies. Some of the beneficial features

of the algorithms are: independence of artifact type, automated,

application-specific solution, able to work for both single and multi-

channel recordings, parameters can be optimized for best perfor-

mance, almost no distortion to signal of interest, does not require

any artifact reference channel, and so on.

– The former proposed algorithm is the first ever attempt in the

context of in-vivo neural recordings which is based on the sta-

tionary wavelet transform with selected frequency bands of neu-

ral signals.
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– The second artifact reduction algorithm is for scalp EEG-based

epilepsy seizure detection application where the proposed algo-

rithm is based on stationary wavelet transform and by consider-

ing the spectral band of seizure events into account to separate

artifacts from seizures.

– An unique artifact probability mapping for artifact detection

and removal from EEG signals for BCI studies is proposed with

a tuning parameter controlled by the user in removing specific

type of artifacts as per application requirement.

– Finally all the proposed algorithms have been tested using both

real and synthesized neural/EEG data to present quantification

performance metrics in comparison with state-of-the-art algo-

rithms. In addition, the later stage signal processing has also

been quantified to observe the improvement in signal analy-

sis/classification that is achieved through artifact removal.
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Chapter 2

Artifacts

This chapter describes the study on artifacts, their origin and types,

effects on dynamic range of the neural recording. The characterization of

artifacts for in-vivo neural recording is the first ever study according to the

best of our knowledge during time of this thesis writing.

2.1 Characterization (In-Vivo Neural

Recording)

We have investigated different artifacts that can be present in the in-

vivo neural recordings from different databases and manually characterized

those inspected artifacts to different types and also we make an effort to

find the possible sources and mechanisms of such artifacts. The task of

identification of different artifact segments from each recording sequence

and from different datasets is non-trivial and expected to be useful for fu-
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ture research given that there has not been any study so far to the best of

our knowledge on investigation of such in-vivo artifacts.

2.1.1 Sources

Artifacts can be of external and internal types according to their origin. In-

ternal artifacts arise from body activities that are either due to movements

made by the subject itself or sudden changes of bioelectrical potentials,

while external artifacts result from coupling with unwanted external in-

terferences. A common case in rat recording experiments originates from

the animal movements that include cable movement and fast head move-

ment [20, 44, 45]. While it is also a frequent case that the interconnecting

cable between recording site and preamplifier acts as an ”antenna” and

picks up unresolved interferences [45]. The differences in picked interfer-

ences (differential) appear as artifacts. A third type of artifacts relate

to the momentary change in electrode interface, which can produce fast

spike-like artifacts. Fourth, aggregated neural signals could be noisy: if

they have good waveform repeatability (spikes) or differentiable spectrum

property (field potentials), they are considered as useful signals. If there

is no repeatability in some of recorded signals, they are more like outliers

in processing and act as artifacts. The described four artifact sources are

illustrated in Figure 2.1.

There are three general factors that are responsible mainly for the gen-

eration of artifacts [20]. They are as follows:
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Figure 2.1: Illustration of different artifact sources for in-vivo neural
recording.

• Environmental factors (e.g. power supply noise of 50/60 Hz and its

harmonics, sound/optical interference, EM-coupling from earth: 7.82

Hz and harmonics [46], etc.)

• Experimental factors (e.g. alter of electrode position, movement of

connecting wire, etc. due to mainly movement of the subject)

• Physiological factors (e.g. EOG, ECG, EMG, BCG, etc.)

The artifacts in broad sense can be classified into two categories: local

and global. Local artifacts are localized in space, i.e. appear only in a single

recording channel while global artifacts can be seen across all the channels

of an electrode array at the same temporal window. An example of global

artifacts appearing in all recording channels that present in two different

datasets is shown in Figure 2.2.

On the other hand, the artifacts can be classified into external and in-

ternal types according to their origin. Internal artifacts arise from body

activities that are either due to movements made by the subject itself or
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Figure 2.2: Example of global artifacts from two different datasets.

Table 2.1: Summary of artifact classification from different perspectives.

sudden changes of bioelectrical potentials, while external artifacts result

from coupling with unwanted external interferences. Sometimes the arti-

facts appear only once in the whole recording sequence (high entropy) while

sometimes in a regular/periodic manner possibly due to some periodic mo-

tions of the subject. An example of such artifacts is shown in Figure 2.3.

Table 2.1 summarizes the artifact classes from different perspectives.

2.1.2 Types

As explained above that there are a number of factors and sources that

generate artifacts, each could produce artifacts with different signatures
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Figure 2.3: An example of irregular (top) and periodic (bottom) artifacts.

and waveform shapes. Therefore, we characterize majority of the artifacts

observed from real in-vivo neural signals into four types based on different

features, e.g. sharpness of edge, duration and waveform shape. The four

types are described as follows (shown in Figure 2.4):

• Type-0: This type of artifacts usually has dominant power spectrum

in low frequency region. They may appear as a single waveform or

in a periodic fashion in recordings and over different channels. The

artifact is similar to the vertical-EOG artifacts present in typical

EEG recordings or may be generated from the muscle activities of

the subject during movement.

• Type-1: This type of artifact segment starts with a large negative

change in offset followed by some waveform similar to that of step
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response of a second order system. Depending on the damping factor,

individual artifacts may have different widths and different decaying

spectra with frequency. However, due to the shape of edge, there

always exist localized high frequency features.

• Type-2: Type-2 artifacts have been seen more frequently compared

with both Type-0 and Type 1 artifacts. They usually have two fast

ramp edges at two ends and can be modeled as the derivatives of the

type-1 artifacts which suggest that type-2 artifacts are another form

of type-1 artifacts possibly generated from the same source or factors.

• Type-3: Type-3 artifacts are often extremely large with narrow in du-

ration (e.g. <200 µSec) and cause recording saturation. They could

appear as individual waveforms and tend to appear simultaneously

over different channels. Different from neural spikes, they have a wide

spectrum characteristic with dominant power in the high frequencies

(from few kHz up to the low pass corner frequency set by recording

electronics).

2.1.3 Properties

• Usually the artifacts have very large magnitude and/or sharper tran-

sitions/edges compared to the neural data of interest, i.e. spike and

local field potential.

• The frequency range for artifact may vary from very low (e.g. mo-
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Figure 2.4: Different types of artifact present at in-vivo recordings.

tion artifact) to high frequency (e.g. artifacts due to residue charge

on electrodes) range suggesting artifact spectra overlap with neural

signal of interest.

2.2 Artifact Spectrum vs. Neural Signal

Spectrum

In order to characterize the spectrum statistics of artifacts, we have ana-

lyzed neural data recorded from rat with a sampling frequency of 40 kHz

using Plexon system 1 [47] (the high pass filter corner frequency is 0.1 Hz

1Plexon Inc. manufactures hardware and software for neurotechnology research. One
of the products is Multichannel Acquisition Processor (MAP) Data Acquisition System
which is Plexon’s original standard for programmable amplification, filtering and real-
time spike sorting of multi-channel signals acquired in neuroscience research.
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and low pass filter corner frequency is 10 kHz). We have manually identi-

fied different artifact segments and labeled each into one of the four artifact

categories as shown in Figure 2.4. Artifact envelopes are further extracted

from the data segments to get the templates and artifact spectrum esti-

mation is performed using windowed Fourier Transform. The results are

summarized in Figure 2.5, where artifacts tend to exhibit varied spectrum

shape and span from a few Hz to several KHz. As expected, type-1, type-

2 artifacts have dominant power at low frequency range while type-3 has

wide spectrum.

To characterize the spectrum statistics of local field potentials only,

we have analyzed data recorded from rat superficial layer cortex where

electrodes are away from any individual neurons. As a result there are less

spiking activities. The average spectrum of local field potential is estimated

from 8 different channels. From Figure 2.5(d), local field potential power

spectrum drops to noise floor at frequency beyond 150 Hz 2.

To derive neural spike spectrum, relatively large magnitude spikes are

identified and grouped into different clusters. Spikes are smoothed and

averaged to generate different spike templates. The power spectra of two

spike templates are plotted in Figure 2.5(e), which drop to noise floor at

frequency beyond 5 KHz3.

2Field potentials are aggregated or averaged from a large number of synaptic activities
within a proximity region of the recording site and feature a 1/fx power spectrum
distribution where x is in between 1 to 3. As a rule of thumb, at frequency beyond 150
Hz, the spectrum of field potential becomes insignificant.

3Extracellular neural spikes, on the other hand, are produced by ionic and displace-
ment currents during the propagation of action potentials, which have clear low-cutoff
and high-cutoff frequencies: the high-cutoff frequency is at several KHz, as sodium chan-
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Consequently there are prospective frequency bands to detect artifacts.

One is at 150Hz - 400Hz region where both field potentials and spikes have

insignificant power. The other one is beyond 5 KHz, which is too fast even

for neural spikes.

2.3 Dynamic Range

In this study, we analyze how much dynamic range is actually increased due

to the presence of artifacts for both real in-vivo data corrupted with arti-

facts recorded from different experimental set-ups and/or subjects/animals

and for simulations with different synthesized artifact templates. We found

nels tend to open for a few hundred µs or even longer; the low-cutoff frequency is around
several hundred Hz as potassium channels start to dominant after 1 ms and pull the
transmembrane voltage back to its rest state.
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that due to the presence of artifact, the dynamic range can increase as high

as 20-30 dB compared to without artifact.

To study the dynamic range due to artifacts, we have analyzed neural

data recorded from few subjects:

• Rat hippocampus data with a sampling frequency of 40 kHz provided

by Dr Edward Keefer at Plexon Inc. (the high pass filter corner

frequency is 0.1 Hz and low pass filter corner frequency is 10 kHz).

The protocols can be found in [48].

• Human Epilepsy data with a sampling frequency of 32556 Hz (Low

cut-off of 0.5 Hz and high cut-off of 9 kHz).

2.3.1 Real Data

The dynamic ranges of 134 and 64 full-spectrum in-vivo sequences of du-

ration 15 min and 18 min from rat hippocampus and human Electrocor-

ticography (ECoG) data respectively have been analyzed considering the

amplifier circuit noise floor of both 1 µVrms and 2 µVrms
4. The spike data

dynamic range has also been studied in order to observe the effect of ar-

tifacts present in the recordings. The increase in dynamic range due to

presence of artifacts for full-spectrum and spike data is on average 13− 30

dB and 18− 27 dB respectively. The detail result is given in the Table 2.2.

4The basis of these two noise floor values are based on the literature survey of state-
of-the-art analog front-end amplifier circuits designed for typical neural recording.
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Table 2.2: Summary of dynamic range change due to artifacts.

2.3.2 Synthesized Data

As described in [49], we have manually identified and extracted different ar-

tifacts (neural data segments contaminated with obvious visually detected

artifacts) from real in-vivo data and categorized each into one of the men-

tioned three types, i.e. type-1, type-2 and type-3. Based on these extracted

templates we simulated similar artifact templates with different amplitudes

and durations as shown in Figure 2.7. We choose a real in-vivo raw data

of 100 second duration which contains no visually detectable or obvious

artifact and termed it as a reference signal. Then the simulated artifacts
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are added to the reference signal in different random positions with dif-

ferent amplitudes, edge widths and durations to form a dataset that is

contaminated with artifacts, we term it as an artifactual signal.

2.3.3 Calculation of Dynamic Range

Let’s denote VN , VRef(p−p), and VArt(p−p) as RMS amplifier circuit noise

floor, peak-to-peak reference signal, and peak-to-peak artifactual signal
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respectively. Then the dynamic range with and without artifact are DRArt

and DRRef respectively and are calculated using the following formula:

DRArt = 20log10(
VArt(p−p)
VN

) (2.1)

DRRef = 20log10(
VRef(p−p)
VN

) (2.2)

Therefore, the increase in dynamic range for full-spectrum signal due to

presence of artifacts is calculated as follows:

∆DR = DRArt −DRRef (2.3)

Now, if we band-pass filter the reference and artifactual signal from 300 Hz

to 5 kHz, we get the spike signal and assume SArt, SRef be the spike signal

with and without artifact respectively. Then the corresponding dynamic

ranges of spike signal are DR′Art and DR′Ref respectively and calculated

similarly as follows:

DR′Art = 20log10(
SArt(p−p)
VN

) (2.4)

DR′Ref = 20log10(
SRef(p−p)
VN

) (2.5)

Similarly, the increase in dynamic range for spike signal due to presence of

artifacts is calculated as follows:

∆DR′ = DR′Art −DR′Ref (2.6)

In our simulation for dynamic range study, we assume two reasonable values

for circuit noise floor, VN : one is 1 µVRMS and another 2 µVRMS.
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2.3.4 Spectral Domain Analysis

In this study, we consider both the amplifier circuit and ADC noise floor.

The gain of the amplifier is adjusted in such a way that the input voltage

swing to ADC is maximum 0.5V given that the supply voltage of ADC

circuit is VDD = 1V . We sweep the ADC resolution from 10 to 18-bit

and calculate the corresponding ADC noise floor for reference signal of 1

V RMS by using following formula:

20log10(
SRef
VADC

) = 6.02N + 1.76 (2.7)

where SRef , VADC and N are the reference signal RMS, ADC noise floor

RMS and no. of ADC-bit respectively. The amplifier circuit noise floor,

VAmp seen from the input of ADC if the amplifier’s gain being A, is as

follows:

VAmp = AVN (2.8)

Then we plot the power spectral density of the full-spectrum neural data,

amplifier circuit noise floor and ADC noise floor for different ADC-bit res-

olution to measure the required SNDR for successful neural data recording

with at least 10 dB more with respect to ADC noise floor. We found that

to get minimum 10 dB SNDR, the required resolution of the ADC should

be at least 14-bit [50].
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2.4 Artifact Characterization in EEG

The artifacts in EEG recording are of various types that come from different

sources. In broad sense, artifacts in EEG can be originated from internal

and external sources. The sources and types of artifacts are discussed

below:

2.4.1 Internal/Physiological Artifacts

• Ocular Artifacts: The eyeball acts as an electrical dipole and therefore

any movement in eyeball generates large-amplitude artifacts in EEG

recordings. Ocular artifacts include eye blink, both horizontal and

vertical eye movement, eye flatter, eye movement during REM sleep,

eye saccade, etc.

• Muscle Artifacts: One of the most prominent physiological artifacts

comes from muscle activity of the subject (EMG). Usually muscle

artifacts are of high frequency range (e.g. from 20 Hz to 40 Hz)

and are generated from activities like chewing, swallowing, clenching,

sniffing, talking, scalp contraction, eyebrows raising, etc.

• Cardiac Artifacts: Cardiac artifacts are due to the electromagnetic

field produced by heart and are of two types: ECG and pulse arti-

facts. ECG artifacts are rhythmic regular activities while the pulsa-

tion sometimes can cause slow waves which might mimic the EEG

activity.
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Table 2.3: Different types of artifacts and their origins.

• Respiration Artifacts: Respiration artifacts originate from the move-

ment of an electrode with inhalation or exhalation and can take the

form of slow, rhythmic EEG activity.

• Sweat Artifacts: Electrodermal or sweat artifacts originate from changes

in electrolyte concentration of electrode due to sweat secretion on the

scalp and take the shape of a long, slow baseline drift in the spectral

band of 0.25 -0.5 Hz [51].

2.4.2 External Artifacts

• Movement Artifacts: Movement of patient especially in an ambula-

tory EEG monitoring system[52, 53, 54], generates a lot of motion

artifacts. This artifact often has extremely high amplitude such that

it can saturate the recordings. Head movement, body movement,

limbs movement, tremor, walking, running, browsing PC, and many
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other movements in daily activities are responsible for this type of

artifact.

• Environmental Artifacts:

– Interferences: This type of artifacts is due to the interferences

coming from the surrounding electrical/electronic devices/machines

that produce EM waves. Also any sound or optical interference

may also be picked up by the EEG electrodes as artifacts.

– Mains voltage: One of most common source of artifacts in any

biomedical signal acquisition is the 50/60 Hz main voltage and

its harmonics.

– Loose electrode: Loose electrode contact with scalp can lead to

impedance change on the tissue-electrode interface and results

in prolonged EEG spike-like artifact.

– Electrode Pop and Movement: Another common source of ar-

tifact is due to electrode pop which produces sudden change in

impedance in the electrode-tissue interface and results in high

amplitude sharp waveform-shaped artifacts. Electrode move-

ment occurs when it moves with respect to the scalp and pro-

duces high-amplitude deflection in EEG generally in the low

frequency range of 1-10 Hz.

A summary of different artifact types and their origins is provided in

Table 2.3 [20, 51].
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Chapter 3

Literature Review

This chapter presents an extensive literature review of the existing and

state-of-the-art artifact handling methods and software tools including ar-

tifact avoidance, rejection, detection and removal. The methods are de-

scribed briefly with their corresponding advantages and limitations. A

comparative study between the methods is also provided at the end of the

chapter in the form of table.

3.1 Introduction

Artifact detection and reduction/removal is one of the most faced challenges

for EEG signal processing applications and is an open research problem. In

EEG-based health-care applications, the electrodes are placed on the scalp

and therefore, the recordings are most prone to artifacts and interferences.

The variety of artifacts and their overlapping with signal of interest in

both spectral and temporal domain, even sometimes in spatial domain,
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Figure 3.1: Trend of research on artifact detection and re-
moval from EEG in terms of publication history since year
2000 until present indexed by Google Scholar. The search
criteria include both the keywords Artifact(s)/Artefact(s) and
EEG(s)/Electroencephalography/Electroencephalogram(s) that present in
the title of published journal articles and conference papers.

make it difficult for simple signal preprocessing technique to identify them

from EEG. Therefore the use of simple filtering or amplitude threshold to

remove artifacts often results in poor performance both in terms of signal

distortion and artifact removal.

Many attempts have been made and still being made to develop suit-

able methods for artifact detection and removal with the help of recent

advancement in signal processing techniques/algorithms in the past decade

and a half. Figure 3.1 shows the trend of EEG artifact research from

year 2000 till last year which suggests an increasing trend of the no. of

article published in the recognized journals and still counting. However,

there is no universal complete solution yet and hence still an active area

of research. After careful reviewing most of the relevant artifact detection
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removal algorithms/methods in the literature, we realize there is a gap be-

tween designed algorithm and its target application. Most of the available

techniques are not application-specific and therefore unnecessary computa-

tional burden arises. Considering this scenario, we present a comparative

analysis of the existing methods/algorithms with their advantages, limita-

tions and application-specific challenges.

3.2 Existing Artifact Handling Methods

First of all, we present the different artifact handling methods found from

extensive literature review as follows:

3.2.1 Artifact Avoidance

Artifact avoidance is a preventive and precautionary way to avoid or min-

imize artifacts by instructing the subject to remain still and try to avoid

unnecessary blinks, eye/body movements. Also by proper grounding of

the EEG recorder, one can reduce the supply mains interference. Arti-

fact avoidance is not the best way to get rid off artifacts completely, but

by minimizing artifacts it can reduce both the data loss and the compu-

tational complexity. However, based on applications, sometimes this is a

very unrealistic solution; e.g. in an ambulatory EEG monitoring or BCI

applications. Moreover, there are several limitations to employ such ap-

proach since some of the physiological artifacts (e.g. ECG) are involuntary

and therefore cannot be avoided. In addition, the subject cannot limit eye
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blinking or movement for a long period of time, especially if the subject is

neonatal or children. Therefore, there will always be some artifacts present

in the recording and those should be handled in the digital signal processing

domain.

3.2.2 Artifact Detection

Identifying artifacts is the first and most important step for handling ar-

tifacts. Often the artifacts overlap with EEG signals in both spectral and

temporal domain such that it becomes difficult to use simple filtering or

straight forward signal processing technique. In many applications, it is re-

quired to identify or separate artifacts in real-time, therefore knowing both

the artifact and signal characteristics is really necessary in order to de-

tect them faster. Detection of artifacts may refer to detecting a particular

epoch or detecting an independent component to be artifactual. Whether

it should be detected in time domain or frequency domain or even in both

by utilizing time-frequency analysis, this decision depends on the type of

artifacts and/or type of applications. The detection method also varies de-

pending on whether a reference artifact source is available or not, whether

the no. of channels are enough, whether we want to remove the artifacts

after detection and so on.
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3.2.2.1 Machine Learning

Few existing methods adopted the idea of machine learning (mostly super-

vised learning) for artifact separation from useful EEG signal by training

a classifier with (supervised) or without (unsupervised) labeled training

datasets. Once artifactual epochs are identified by applying a machine

learning algorithm, such epochs are either highlighted as artifact annota-

tor to the clinicians for helping in decision making (e.g. seizure detection)

or can be rejected before examination from clinician or before sending to

automated signal processing system [55].

Machine learning techniques are mainly two types: supervised and un-

supervised learning. Among supervised learning algorithms, two most pop-

ular methods used for classification between artifact and brain signals are

ANN [56, 57, 58, 59, 60] and SVM [55, 61, 62, 63, 64, 65]. Among unsuper-

vised learning, k-means clustering and outliers detection are most common

in this particular area of research [55]. A basic approach to classify artifact

from EEG by using the machine learning classifier is shown in Figure 3.2.

3.2.3 Artifact Rejection

The easiest way to remove the influence of artifacts after detection is to

reject/cancel the epoch or segment of EEG data which is found to be arti-

factual. This process not only removes artifact but also removes important

EEG information which results in the loss of data. This is the early days

way of handling artifacts, but nowadays with the introduction of recent
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Figure 3.2: Machine learning classification for identifying artifactual epoch
from clean EEG epoch.

signal processing techniques, the preference is more on the techniques for

artifact removal or correcting them instead of rejecting the data epoch.

However, in certain applications, this technique can still work reasonably

well, e.g. offline analysis or during training of any classifier.

3.2.4 Artifact Removal

Artifact removal involves canceling or correcting the artifacts without dis-

torting the signal of interest. This is primarily done in two ways: either by

filtering and regression or by separating/decomposing the EEG data into

other domains.

3.2.4.1 Regression

Regression analysis using a multi-modal linear model between observed

and a reference signal is a traditional way of identifying artifactual samples

and consequently removing such sample that do not belong to the model.
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Observed artifact-contaminated EEG signal and an artifact reference sig-

nal are common methods for removing some physiological artifacts such as

ocular and cardiac artifacts. However, such regression analysis often fails

when there is no reference channel available. In addition, EEG signal be-

ing non-linear and non-stationary process, linear regression is not the best

choice for analysis in such applications. Moreover, it can only be used to

treat few particular types of artifact, not all types.

3.2.4.2 Blind Source Separation

One of the most popular artifact detection methods is based on BSS. Here

the observed signals, X in multi-channel recordings are assumed to be linear

mixture of the sources, S with additive white noise vector N

X = AS +N (3.1)

The objective is to find an estimate of the linear mixture matrix, A

denoted by W by an iterative process and then estimate the source signals,

S ′ by following formula:

S′ = WX (3.2)

The assumption with BSS is that the number of sources can be at most

equal to that of observed channels (or lower) and the sources need to be

independent (for ICA) or maximally uncorrelated (for CCA) from each

other. A basic BSS technique is illustrated in Figure 3.3.
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Figure 3.3: Illustration of blind source separation technique.

• ICA: Independent Component Analysis (ICA) is based on blind

source separation (BSS) technique where it is assumed that the sources

are linearly independent. The major problem with ICA-based artifact

detection and removal is that, it is often not automatic. It requires

manual intervention to reject ICs with visually detected artifacts after

decomposition. It (i.e. artifact detection and removal) can be made

automatic by combining ICA with another complementary method

such as Wavelet Transform or EMD or using classifier like SVM or

even with a help of reference channel [66]. However, even in such

case, the Independent Component with artifact(s) may also contain

some residual neural signals. Therefore, during signal reconstruction

after completely rejecting that particular IC, it introduces distortion

to the neural signal. Another problem is that it cannot operate on

single channel data, since the no. of recording channels must be at

least equal to the no. of independent sources. The computational

complexity is another factor that limits the choice of ICA for artifact

removal in applications that require online/real-time implementation

of the algorithm. Finally the involvement of iterative process in com-
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puting ICA algorithm makes it difficult to perform robustly. E.g.

ICA may be useful to remove global artifacts such as ocular artifacts

[16, 19, 58, 67, 68] or sometimes other physiological artifacts, but not

external artifacts. There are few works reported the use of modified

[67] or constrained ICA [69, 64, 70, 71] for automated and better

performance in artifact detection and removal.

• CCA: Canonical Correlation Analysis or CCA is another BSS method

for separating a number of mixed or contaminated signals that uses

second-order statistics (SOS) to generate components derived from

their uncorrelated nature. By looking for uncorrelated components,

the approach uses a weaker condition than statistical independence

sought by the ICA algorithm. ICA does not take temporal correla-

tions into account while CCA addresses this point by being capable

of finding uncorrelated components that, in addition, have maximum

spatial or temporal correlation within each component [21]. Both

methods provide qualitatively the same results, but CCA method is

more computationally efficient.

• MCA: Morphological Component Analysis (MCA) decomposes the

recorded signal into components that have different morphological

characteristics where each component is sparsely represented in an

over-complete dictionary [21]. It is only applicable to certain known

artifacts whose wave shape or morphology are known and stored in a
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Figure 3.4: A 3-level DWT filter bank for decomposition (collected from
[74]).

database. The efficacy of this method greatly depends on the avail-

able artifact-template database. In [72, 73], MCA is used to remove

ocular artifacts and some of the muscle artifacts originating from jaw

clenching, swallowing, and eye-brow raising.

3.2.4.3 Time-Frequency Representation

Time-frequency analysis of non-stationary time-series data is quite popular

in biomedical signal processing, e.g. in EEG signal processing. The reason

of using simultaneous time and frequency domain analysis is because of the

non-stationary properties of this type of signal, i.e. frequency and statistics

of time-series data vary with time. Therefore any momentary change in

frequency values for any signal components (e.g. either artifact or seizure

[75, 76] can be captured in a particular temporal window. [77] proposed

a time-frequency analysis of ocular artifacts (OAs) including blinks and

saccades found in EOG and observed that frequencies up to 181Hz can be

present in a subject’s EOG for certain tasks. This finding suggests that if

EOG is used for ocular artifact removal from EEG, then EOG should be
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sampled at least 362 Hz to avoid aliasing.

The common time-frequency representation is performed by short-window

or short-time Fourier Transform (STFT). However, this method is not so

effective as it has uniform time-frequency resolution at all frequency values.

For EEG, since the bandwidth is around 0.5-120 Hz and most of the arti-

facts appear in the lower frequency region (< 10 Hz), therefore, it’s required

to have high frequency resolution in lower frequency region which STFT

cannot provide. A nice solution of this issue is to use wavelet transform

since it provides a decent time-frequency resolution for EEG signals.

3.2.4.4 Wavelet Transform

Wavelets are localized in both time and frequency whereas the standard

Fourier transform is only localized in frequency. Although the Short-time

Fourier transform (STFT) is more similar to the wavelet transform, in a

sense that it is also time and frequency localized, but wavelets provide a

better signal representation using multi-resolution analysis, with balanced

resolution at any time and frequency. The wavelet transform is a time-scale

representation method that decomposes signal f(t) into basis functions of

time and scale which are dilated and translated versions of a basis func-

tion ψ(t) which is called mother wavelet [78]. Translation is accomplished

by considering all possible integer translations of ψ(t) and dilation is ob-

tained by multiplying t by a scaling factor which is usually factors of 2.

The following equation shows how wavelets are generated from the mother
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wavelet:

ψj,k(t) = 2j/2ψ(2j/2t− k) (3.3)

where j indicates the resolution level and k is the translation in time.

This is called dyadic scaling, since the scaling factor is taken to be 2.

Wavelet decomposition is a linear expansion and it is expressed as

f(t) =
+∞∑

k=−∞

[ckφ(t− k)] +
+∞∑

k=−∞

+∞∑
j=0

dj,kψ(2jt− k) (3.4)

where φ(t) is called the scaling function or father wavelet and ck and dj,k

are the coarse and detail level expansion coefficients, respectively. Theoret-

ically, the expansion coefficients ck and dj,k are calculated from the inner

product of f(t) with φ(t) and ψ(t), respectively. The power of wavelet

transform is based on the fact that these coefficients are computed in a re-

cursive manner. Once ck is known in a starting scale J , all the coefficients

for j = J, J1, ..., are found by a simple linear transform. A wide variety

of functions could be chosen as the mother wavelet as long as following

equation is satisfied:

∫ +∞

−∞
ψ(t)dt = 0 (3.5)

There are many techniques based on wavelet theory, such as wavelet

packets, wavelet approximation and decomposition, discrete and continu-

ous wavelet transform, and so forth. The most commonly used technique is
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Discrete Wavelet Transform (DWT). The DWT is developed from continu-

ous wavelet transform with discrete input, but it is simplified mathematical

derivation. The relation between input and output can be represented as

xa,L[n] =
N∑
k=1

xa−1,L[2n− k]g[k] (3.6)

xa,H[n] =
N∑
k=1

xa−1,L[2n− k]h[k] (3.7)

where g[n] is a low pass filter just like scaling function and h[n] is a

high pass filter just like mother wavelet function. Briefly, discrete wavelet

transform is entering a signal into a low pass filter to get the low frequency

component and into a high pass filter to get the high frequency component.

The wavelet filter decomposition structure is shown in Figure 3.4 [78].

Once the signal is decomposed into detail and approximate coefficients,

thresholding is applied on the decomposed coefficients to denoise the signal

from artifacts. Then the new set of coefficients (all detail with final level

approx. coefficients) are added up to reconstruct back the artifact-reduced

signal.

3.2.4.5 Empirical Mode Decomposition

EMD is an empirical and data-driven method developed to perform on

non-stationary, non-linear, stochastic processes and therefore it is ideally

suitable for EEG signal analysis and processing. However, the computa-

tional complexity of EMD is quite heavy, so may not be suitable for online
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applications. Moreover, the theory behind EMD is still not complete and so

far used in empirical studies, therefore it is difficult to predict its robustness

in all EEG recordings.

EMD algorithm decomposes a signal, s(n) into a sum of the band-

limited components/functions, dm(n) called intrinsic mode functions (IMF)

with well defined instantaneous frequencies [27, 33, 79]. There are two basic

conditions to be an IMF: (i) the no. of extrema must be equal (or at most

may differ by one) to the no. of zero crossings (ii) any point, the mean value

of the two envelopes defined by the local maxima and the local minima has

to be zero [27]. The general process flow of EMD algorithm is shown in

Figure 3.10.

EEMD : It is an enhanced version of EMD (Enhanced Empirical Mode

Decomposition) and inspired from the fact that EMD algorithm is very sen-

sitive to noise which often leads to mode mixing complication. Therefore,

EEMD is proposed which uses an average of no. of ensembles (IMFs) from

EMD as the optimal IMFs thus it provides a noise-assisted data analysis

method [33].

3.2.4.6 Adaptive Filtering

An adaptive filter is a system with a linear filter that has a transfer function

controlled by variable parameters and a means to adjust those parameters

according to an optimization algorithm [81]. The filter weights can adapt

based on the feedback from output of the system and it requires a reference
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Figure 3.5: Typical use of adaptive filtering in canceling physiological ar-
tifacts with available artifact source channel as reference [80].

input to compare the desired output with the observed output.

Considering the observed signal, s(n) is composed of two signal compo-

nents: original EEG, x(n) and additive artifact r(n); if the artifact source

v(n) is available from a dedicated channel (e.g. EOG or ECG); then by an

adaptive algorithm (e.g. LMS, RLS, etc.) the artifact-free EEG, x′(n) is

possible to estimate given the assumption that the desired EEG and arti-

fact signal are independent (or at least uncorrelated [82]). An illustration

of the use of adaptive filter for EOG artifact removal is shown in Figure

3.5.

s(n) = x(n) + r(n) (3.8)

3.2.4.7 Wiener Filtering

Wiener filter which doesn’t require the use of an external reference signal

unlike adaptive filter, however, assumes that both the signal and artifact

are stationary linear random processes with known spectral characteristics



54

Real Artifact Templates

Wavelet-enhanced ICA/CCA (wICA or wCCA)

Wavelet-enhanced ICA (wICA)

EMD-ICA or EMD-CCA

Artifact-free Data 
(Reference Data)

Raw In-Vivo 
Data With 
Artifacts

Clean in-vivo 
Data (Reference)

Raw In-Vivo Data
With Artifacts

Extract Artifact 
Templates

Synthesized 
Artifactual Data

Random 
Amplitude Random 

Location

Random 
Duration 

Extract Artifact 
Templates

Synthesized 
Artifactual 

Data
+

0 200 400 600 800
-6

-4

-2

0

2

A
m

pl
itu

de
, m

V

Type 1 Template

0 50 100 150 200

-1

-0.5

0

0.5

Time, mS

Type 2 Template

1.5 2 2.5 3 3.5 4

-10

-5

0

5

Type 3 Template

Type-1
Type-2 Type-3

Simulate 
Artifact 

Templates

Random
Amplitudes Random

Durations
Random

Locations

6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

Artifact Duration Ratio in %

%
ar

ti
fa

ct
 r

ed
u

ct
io

n
, 

la
m

d
a

6 8 10 12 14 16 18 20 22
10

15

20

25

Artifact Duration Ratio in %

d
e
l 

S
N

R
 i

n
 d

B

6 8 10 12 14 16 18 20 22
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

Artifact Duration Ratio in %

S
p

ec
tr

al
 D

is
to

rt
io

n

 

 

Artifactual

Reconstructed

6 8 10 12 14 16 18 20 22
0

0.05

0.1

0.15

0.2

0.25

Artifact Duration Ratio in %

R
M

S
E

 

 

Artifactual

Reconstructed

6 8 10 12 14 16 18 20 22
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

Artifact Duration Ratio in %

S
p

ec
tr

al
 D

is
to

rt
io

n

 

 

Artifactual

Reconstructed

6 8 10 12 14 16 18 20 22
0

0.05

0.1

0.15

0.2

0.25

Artifact Duration Ratio in %

R
M

S
E

 

 

Artifactual

Reconstructed

ICA
(FastICA)

DWT
Denoising

(Thresholding)

Inverse
DWT

Inverse
ICA

Multi-channel
Artifactual 

Data

Multi-channel
Reconstructed 

Data

ICA 
or

CCA
DWT

Denoising
(Thresholding)

Inverse
DWT

Inverse
CCA

Multi-channel
Artifactual 

Data

Multi-channel
Reconstructed 

Data

EMD
ICA
or

CCA
Thresholding

Inverse
ICA/CCA

Inverse
EMD

Single-channel
Artifactual 

Data

Single-channel
Reconstructed 

Data

Figure 3.6: General process flow of EMD-BSS and Wavelet-BSS methods.

and also the signal and artifact are uncorrelated. But in fact, the neural sig-

nal exhibits non-stationary characteristics and is believed to originate from

a complicated non-linear stochastic process. Again, although the spec-

tral characteristics of EEG rhythms are known, due to the uncertainty of

different types of artifact sources, the spectral characteristics cannot be de-

termined accurately. In addition, the Wiener filter cannot be implemented

in real-time, so it is not a good choice for artifact removal in applications

that require real-time processing.

3.2.4.8 Bayesian Filtering

• Kalman Filtering: Kalman filter is another kind of Bayes filter

which also doesn’t require an external reference signal and is capable

of operating in real-time. This method requires the filter models to

be created prior to implementation of the algorithm and the model

has to be linear. Besides, it also assumes that a-priori estimation is

Gaussian and can work only with unimodal distribution. Now, the

artifacts are of different waveform shapes and it is likely to be of
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multi-modal distribution. The a-priori estimation may also not be

valid due to non-stationary, nonlinear properties of EEG signals. So

Kalman filter is not supposed to work robustly for such applications.

• Particle Filtering: Particle filter is a kind of filter based on Bayesian

approach which overcomes the limitation of Kalman filter as it does

not require the model to be linear or the distribution to be unimodal.

But it still needs a-priori user input which may not be available always

in EEG-based applications. And there has very little work been done

so far to use particle filter to remove artifacts in EEG signals. Hence

it is not guaranteed to be a successful choice, but one can definitely

try to observe the outcome of such filter implementation in removing

artifacts.

3.2.4.9 Spatial Filtering

Principal Component Analysis (PCA): PCA is a type of spatial filter that

transforms the time domain datasets into a different space by rotating axes

in an N -dimensional space (where N is the no. of variables or EEG chan-

nels) such that each dimension in the new space has minimum variance

and the axes are orthogonal to each other [83]. PCA reduces data dimen-

sion and highlights specific features of data which is usually difficult to

identify in the spatially unfiltered data as the new components are created

by weighted combinations of all EEG channels. Two recent articles have

proposed artifact removal method based on PCA: [84] reported the use
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of robust PCA after preprocessing is done based on wavelet denoising and

band-pass-filtering; while [85] compared PCA with ICA for artifact removal

and found ICA performs better than PCA. Both these articles have eval-

uated their method qualitatively, therefore, it’s not possible to comment

exclusively on the efficacy of PCA in detecting and removing artifacts. One

important limitation of PCA (or SVD) is that it fails to separate/identify

ocular or similar artifacts from EEG when amplitudes are comparable since

PCA depends on the higher order statistical property [69].

3.2.4.10 Hybrid Methods

In recent years, researchers are keen to utilize the advantages of different

methods by combining them into a single method for artifact detection and

removal, i.e. hybrid method which has two or more stages. Some of these

methods are discussed below:

• Wavelet-BSS: This hybrid method formed by integrating two popu-

lar methods: wavelet transform and blind source separation is mainly

inspired from the fact that only BSS based separation of artifactual

components (e.g. ICs) is often erroneous since the separated artifac-

tual component also contains residual neural information. Therefore,

completely rejecting such component will introduce significant distor-

tion in reconstructed EEG signal. Hence, the multi-channel datasets

are transformed into ICs or CCs and then possible artifactual com-

ponent is decomposed by wavelet transform to different frequency
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bands of detail coefficients. After that, the artifactual coefficients

are denoised by thresholding which eventually preserve the residual

neural signals of low amplitude after thresholding the higher artifac-

tual segments. The related articles are [38, 86, 87] for wavelet-ICA,

[35, 36] for wavelet-CCA. On the other hand, there are similar hybrid

methods that can be applied to single-channel EEG data by reversing

the order of wavelet transform and BSS blocks. E.g. [88, 89] reported

artifact removal by first decomposing signal into wavelet coefficients

then artifactual coefficients are passed through BSS block to sepa-

rate artifacts from neural signal. However, typically the prior way is

more known to the research community as wavelet enhanced ICA or

wavelet enhanced CCA. An example of such method is shown in Fig

3.6. Please note that the type of wavelet transform can be DWT,

CWT, SWT or sometimes WPT [90].

• EMD-BSS: This hybrid method involves BSS with EMD instead of

wavelet transform. The difference is that usually the first stage is to

decompose the signal into IMFs by EMD or EEMD and then apply

BSS (ICA or CCA) on the IMFs to identify artifactual component

followed by rejecting the artifactual IC or CC. The general process

flow of this hybrid method is also shown in the same Figure 3.6. Such

methods are reported in [33, 66, 91]



58

BSS (SOBI)
Feature 

Extraction
Inverse

BSS

Multi-channel 
Raw EEG Data

Artifact-
Free EEG

SVM

Figure 3.7: Process flow of the hybrid BSS-SVM algorithm.

• BSS-SVM: [64] reported a hybrid BSS-SVM algorithm for eye blink

and ECG artifact removal where certain carefully chosen features

are extracted from separated source components and then fed into a

SVM classifier to identify artifact components followed by removing

them. Finally the rest of the source components are re-projected to

reconstruct artifact-free EEG. The whole system is illustrated in Fig

3.7.

• REG-BSS: [68] reported a hybrid methodology by combining BSS

and regression based adaptive filtering (with vEOG and hEOG as

reference channels) for rejection of ocular artifacts as shown in 3.8.

Similar techniques have been used by [19] to remove ocular artifacts

by combining ICA and adaptive filtering.

Another hybrid approach combining ICA and Auto-Regressive eXoge-

nous (ARX) was proposed by [92] to remove ocular artifacts robustly

as shown in Fig 3.9. In this method, ARX is used to reduce the

negative effect induced by ICA by building the ARX multi-models

based on the ICA correlated signals and the reference EEG that are
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Figure 3.9: Process flow of the hybrid ICA-ARX methodology.

selected prior to the artifact-contamination.

• Other Hybrid Methods: [93] reports EOG artifact removal us-

ing a hybrid method combined of Wavelet decomposition and Artifi-

cial Neural Network and termed as Wavelet Neural Network (WNN)

where the reference EOG channel is only required during training of

ANN classifier. A method combining DWT and ANC (Adaptive noise

canceler) is proposed in [94] to remove ocular artifacts where the OA

reference is derived from DWT decomposition and then used in the

adaptive filter as reference. On the other hand, [95] used the combi-

nation of EMD and adaptive filter (with RLS algorithm) to remove

ECG artifacts from EEG recordings. The authors in [60] presented

a new way to remove EOG and EMG artifacts from EEG by using

a hybrid combination of functional link neural network (FLNN) and
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Figure 3.10: Process flow of EMD algorithm to generate IMFs.

adaptive neural fuzzy inference system (ANFIS). The ANFIS usu-

ally has two parts: a nonlinear antecedent and a linear consequent;

however, in their proposed system, the second part is replaced with

the FLNN to enhance the nonlinear approximation ability. Then an

adaptive filtering algorithm adjusts the parameters of both ANFIS

and FLNN.
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3.2.4.11 Statistical Features

Several statistical features are used in machine learning classifier or during

threshold calculation in wavelet/EMD/ICA based methods for separating

or identifying artifacts from EEG signal of interest. Some of such features

are discussed below:

• Auto-regressive Features: The autoregressive framework assumes

that the EEG signal can be modeled as a linear combination of the

signals at the previous time points. An autoregressive model of order

p for a single channel can be written as:

y(t) =

p∑
i=1

aiy(t− 1) + εt (3.9)

where p denotes the number of times points in the past that are used

to model the current time point and Et denotes a zero-mean process

with variance σ2. The parameters of the AR model are the coefficients

αi, i = 1, ..., p and the noise variance σ2.

• Time Domain Features:

– Entropy, H: Entropy (H), a measure of uncertainty of infor-

mation content, of a discrete random variable x with possible

values x1, ..., xn, can be calculated as:

H(x) = E[− ln(P (x))]. (3.10)
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Here E is the expected value operator and P (x) is the probability

mass function of x.

– Kurtosis, Kr: Kurtosis is the measure of ”peakedness” of prob-

ability distribution function and is calculated for a real-valued

random variable x as follows:

Kr[x] =
µ4

σ4
. (3.11)

where µ and σ are the mean and standard deviation of random

variable x.

– Line Length, LL(n): Line length, a signal feature for seizure

onset detection as reported by [96], for a discrete time signal

x[k] can be represented by,

LL(n) =
n∑

k=n−N

abs[x(k − 1)− x(k)] (3.12)

where N is the time window length. Here N = 1 sec.

– Maximum, M : It is the maximum or peak value of an epoch

and noted down as a feature.

M = max(x(n)) (3.13)

– NEO, Ψ: The ability of Non-linear Energy Operator (NEO)

to enhance signal’s transition or large amplitude [97, 98, 99] is

sometimes considered as feature for seizure classification. The
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NEO operator ψ applied to a discrete time variable x(n) is cal-

culated as follows:

ψ[x(n)] = x(n)2 − x(n+ 1)x(n− 1) (3.14)

In this thesis, we have taken the mean value of ψ[x(n)] for each

epoch.

– Variance, σ2: The variance of a random variable x is the ex-

pected value of the squared deviation from the mean, µ = E[X]:

σ2(x) = E[(x− µ)2] (3.15)

where E is the expected value operator.

• Frequency Domain Features:

Spectral features along with temporal or spatial features are often

used for EEG classification. As mentioned before that EEG rhythms

have different spectral band, therefore sometimes the relative power in

those bands are used as features for classifier training. It is important

to note that apart from the rhythms, there are recently reported High

Frequency Oscillations (HFO having band of 80 - 200 Hz), Ripple (

200 - 600 Hz) bands present in EEG. In addition, the frequency band

of typical Scalp EEG is 0.05 - 128 Hz while epileptic seizure appears

in 0.5 Hz -29 Hz [100]. These bands and their FFT or spectral power

are useful features for separating artifacts from EEG.
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– FFT, F : Fast Fourier Transform or FFT is the frequency repre-

sentation of time domain signal values. For feature extraction,

we have used the mean of the absolute of FFT values for each

epoch computed over the entire frequency range of EEG signal

(i.e. 0-128 Hz).

F = mean(abs[FFT (k)]) (3.16)

– Maximum FFT, Fmax: This feature is the maximum or peak

value of the absolute of FFT values.

Fmax = max(abs[FFT (k)]) (3.17)

• Spatial Features: Spatial distribution or topographic mapping helps

to identify the origin of many artifacts (e.g. ocular artifacts are dom-

inant in frontal EEG channels). In addition some artifacts may ap-

pear in several nearby channels (global artifacts such as eye blink)

where some only in one channel (i.e local artifacts). Therefore spatial

features along with their spectral content are important to identify

artifacts from EEG signals [56, 101].

3.3 Comparison between Methods

In order to compare different artifact handling methods qualitatively, sev-

eral factors need to be considered that can evaluate the pros and cons of
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these methods. Such factors are described as follows:

A detail comparison between the existing artifact detection and removal

methods in the literature found from recognized journals is provided in

tables 3.1, 3.2 and 3.3.

3.3.1 Removal Performance

It is quite difficult to compare different artifact removal methods based on

their ability to remove artifacts since very few quantitative evaluation have

been reported in the literature. Most of the published articles evaluated

their method in terms of some qualitative plots. In addition, very few of

them quantified the distortion to desired EEG signals due to the removal

effect. Therefore, it’s not fair to tell which performs best based on the

study.

3.3.2 Automatic or Semi-Automatic

Most of the EEG based applications require automated information pro-

cessing, specially it is an online/real-time implementation. In addition,

manual identification of artifactual component or epoch is very time-consuming

and laborious for multi-channel long-term data sequences. Therefore, many

signal processing techniques have been proposed along with some useful a-

priori signal or artifact statistics/characteristics have been utilized. Among

them, BSS-based techniques sometimes can be semi-automated because of

identification of artifactual component may require some training or param-
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eter selection/tuning. Although there are few papers available that propose

automated identification of ICs after ICA [102, 103]; however, they both re-

quire training samples for supervised classification and in addition requires

an extra information in the form of contact impedance measurement [104].

If the method involves ICA for automatic detection of artifacts, then there

has to be another stage (or method) in order to make the whole process

automated.

3.3.3 Real-time/Online Implementation

Online/Real-time implementation demands the algorithm to be fast enough

and to have low-enough complexity for such application. Here, online im-

plementation refers to the algorithms implemented in software platform ca-

pable of online/real-time processing, not in hardware platform. However,

some EEG-based applications such as wireless ambulatory EEG monitor-

ing, may require on-chip implementation of the artifact detection/removal

algorithm. In such case the computational complexity has to be minimum

which is a great challenge and so far according to best of our knowledge no

real-time hardware implementation has been performed.

3.3.4 Single or Multi-Channel

BSS-based methods require multi-channels to function, the more no. of

channels the better for separating individual sources. Therefore, such meth-

ods cannot be used in low-channel (e.g. 4-6) or single-channel based ap-
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plications (e.g. in ambulatory monitoring of epilepsy patient). On the

other hand, Wavelet transform and EMD-based techniques can work with

single-channel analysis by decomposing a single data sequence into multi-

ple components (approx./detail coef. for wavelet decomposition and IMF

for EMD).

3.3.5 Robustness

Robustness is an important issue in developing any artifact removal algo-

rithm as artifacts are of diverse types and contaminate the EEG differently

in different recording environments. The factors that should be considered

for robustness include artifact-SNR, type of artifact, subject-variability,

environmental variability, application-specificity, etc.

3.3.6 Reference Channel

Most of the available methods require a dedicated artifact channel to be

functional. In order to remove ocular or cardiac artifacts, the reference

channel often provide satisfactory complement information to identify ECG

or EOG artifacts. Besides, real-time contact impedance measurement can

provide the complement information about artifacts due to electrode pop-

up, movement or loose connection. Some movement tracking devices such

as motion captured camera, accelerometer and/or gyroscope can help to

detect motion artifacts.
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3.3.6.1 EOG

Several articles reported to remove EOG artifacts by the use of EOG refer-

ence channel [16, 68, 105]. [105] reported a hybrid de-noising method com-

bining Discrete Wavelet Transformation (DWT) and an Adaptive Predictor

Filter (APF) for automatic identification and removal of ocular artifacts

for portable EEG applications which is found to achieve lower MSE and

higher correlation between cleaned and original EEG in comparison with

existing methods such as Wavelet Packet Transform (WPT) and Indepen-

dent Component Analysis (ICA), Discrete Wavelet Transform (DWT) and

Adaptive Noise Cancellation (ANC). Another article [68] reported an au-

tomated ocular artifact removal method using adaptive filtering and ICA

with the help of vertical (vEOG) and horizontal (hEOG) EOG channel

as reference. On the other hand, [16] proposed an ICA-based ocular arti-

fact removal method from blind subjects EEG utilizing both vertical and

horizontal EOG references.

3.3.6.2 ECG

[19, 95, 98] proposed removal/reduction of ECG/cardiac artifacts from EEG

using a separate ECG reference channel. Among them, [19] proposed an

automatic method based on a modified ICA algorithm that works for a

single-channel EEG and the ECG (as reference) which gives promising re-

sults when compared with two popular methods that use a reference chan-

nel namely ensemble average subtraction (EAS) and adaptive filtering. The
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other two articles proposed their methods for application in neonatal EEG

monitoring. [98] reported an automated ECG artifact reduction method

that mainly relies on ICA algorithm with the correlation-based threshold-

ing to identify the ECG artifactual IC and shows that it can effectively

reduce the false positives during neonatal seizure detection. Another paper

[95] proposed a combination of EMD and Adaptive Filtering based method

for ECG artifact removal in preterm EEG and reported up to 17% im-

provement in correlation coefficient between original and cleaned datasets

compared with removal by only adaptive filtering.

3.3.6.3 Eye Tracker

Both[99, 106] reported techniques for removal of ocular artifacts by using

an eye tracker as reference. The advantage of using eye tracker is that it can

reduce the undesired EEG distortion produced by using an EOG channel as

reference since EOG not only captures ocular events but also some frontal

EEG events. Besides, in practical daily applications, the use of eye tracker

removes the requirement of EOG electrodes attached to the face. [106] has

shown to have significantly improved performance in removing of only eye

movement artifacts by combining Kalman filter with the eye tracker in-

formation compared with three other popular methods namely Regression,

PCA, and SOBI. On the other hand, [99] introduced an online algorithm

for ocular artifacts (both movements and blink) removal from EEG by uti-

lizing a high-speed eye tracker (> 400Hz) along with the frontal-EEG as
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reference instead of EOG channel. The article used two adaptive filters

(RLS and H∞) to prove the efficacy of their proposed technique which was

shown to outperform the techniques using only EOG as reference.

3.3.6.4 Accelerometer

There are few articles reported to have used accelerometer recordings in

conjunction with EEG recordings for detecting motion artifacts [44, 51].

[44] has shown that movement artifacts can be detected automatically using

an accelerometer with a developed algorithm based on AR modeling and

thus can increase the speed efficiency for automatic computation of EEG

model parameters compared with manual detection of movement artifacts.

Kevin reported in his PhD thesis [51] that the use of accelerometer as

reference channel not only can detect motion artifacts but also can remove

them with the use of different filtering techniques such as adaptive filtering,

Kalman filtering and Wiener filtering.

3.3.6.5 Gyroscope

[61] reported to detect different head movement artifacts automatically by

using a gyroscope as complementary features in fusion with EEG features

and finally with the help of SVM, to classify artifacts from neural infor-

mation. The method is inspired by the realization of an artifact detection

system for implementing with the point-of-care REACT (Real-time EEG

Analysis for event deteCTion) technology that has potential application in
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the detection of neurological events (e.g. seizure events) in adults. The ar-

tifacts were generated for 10 different types of head-related movements us-

ing 14-channel Emotiv EEG headset and the movement time was recorded

for validation during artifact detection. The reported accuracy in terms

of Avg. ROC areas was 0.802 and 0.907 for participant independent and

dependent systems respectively.

3.3.6.6 Contact Impedance Measurement

[97, 104, 104] reported that by measuring the change in contact impedance

due to head movements can help to estimate the motion artifacts and by

utilizing this information with an adaptive filter in combination with band-

pass filtering, the artifacts can be reduced significantly in real-time. The

article also studies the effect of head movement artifacts on EEG recordings

results in contaminating the spectral domain in < 20 Hz frequency.

3.3.6.7 Motion Captured Camera

[107] proposed a channel-and-IC-based method to remove movement ar-

tifacts during walking and running from a high-density EEG recordings

(248-channel) with the help of kinematics+kinetics information acquired

from a 8-camera, 120 frames/s, motion capture system. The subject was

asked to walk and run on a custom built, dual-belt, force measuring tread-

mill with two 24- belts mounted flush with the floor while simultaneously

both brain and body dynamics were recorded. The findings conclude that
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high-density EEG is possible to use in order to study brain dynamics dur-

ing whole body movements; and the artifact from rhythmic gait events can

be reduced by template regression procedure.
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3.4 Effects of Artifacts in EEG-Based

Applications

The purpose of this section is to discuss the challenges faced in different

EEG-based applications due to the presence of artifacts and how artifacts

affect the outcome of any application. It also discusses the importance of

developing an automated and reliable artifact removal algorithm for such

applications.

3.4.1 Epilepsy Monitoring

During epilepsy patient monitoring for diagnosis of seizure, long-term EEG

recording is used which is often contaminated by different types of artifacts

and hence degrade the signal quality, particularly increase the false pos-

itives during seizure detection [100]. This scenario gets worse when the

patient monitoring is performed under ambulatory environment [52, 53]

where different types of movement-related artifacts are present.

3.4.2 BCI Applications

During BCI experiments or applications, artifacts can modify or alter the

shape of a neurological event (e.g. ERP) that drives the BCI system.

Moreover, they can also mistakenly result in an unintentional control of

the device and hence consequence in a false positive [108]. Therefore, there

is a strong urge to avoid the artifacts if possible, otherwise they must be
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identified in order to reject or remove them from the neural signals to be

analyzed or processed for the use of BCI system/device. In a self-paced BCI

system, artifacts can negatively influence the performance of the system in

following two ways:

• by altering the shape of the neural event during an intentional control

(IC) period, resulting in the reduction of True Positives

• by imitating the shape/properties of the neural event during a non-

intentional control (NC) periods, resulting in the increase of False

Positives.

3.4.3 Patient Monitoring

EEG monitoring of critical patients in intensive care unit (ICU) is a popular

diagnostic tool for detection of brain injuries, which might result in epilep-

tic seizures [44]. Critical illnesses due to brain injuries increases the risk of

non-convulsive seizures [44] which does not affect the normal neuromuscular

activity. In addition, the evolution of seizures for patients with critical con-

dition is usually long-lasting which may contain slow frequencies and may

not have obvious evolution in frequency, morphology or location. There-

fore it is not possible to be sure that it represents seizure activity, which

eventually demands for long-term EEG monitoring [44]. However, during

long-term EEG monitoring, it’s not feasible to restrict the patient without

movement and hence a lot of motion artifacts along with other physiolog-

ical artifacts contaminate the recording. As a result, the monitoring gets
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difficult as the artifacts often misrepresent the recordings. Another appli-

cation of EEG recording is during drug-effect monitoring or monitoring the

right amount of dose during anesthesia.

3.4.4 Sleep Study

EEG, along with other physiological signals, are used to study and monitor

different sleep stages and their associated patterns. For example, drowsi-

ness, sleep apnea are some of the sleep-related disorders that are possible to

monitor through EEG. The frequency bands of EEG during different sleep

stages are different, however, as artifacts contaminate the recordings in

both spectral and temporal domain, therefore the signal analysis becomes

erroneous. However, to the best of our knowledge, unfortunately till now

very few works [109, 110] have been done for artifact detection and removal

on EEG during sleep study [44]. It is worth to mention that none of them

emphasizes on the effects of artifacts and their removal on the sleep EEG

and hence it is expected to be covered in near future, the sooner the better

for such sleep study applications.

3.4.5 Other Applications: Neurological Diseases

EEG is also used in many other neurological applications, e.g. disease

diagnosis, mental fatigue study, or even depression study. One of the neu-

rological diagnosis applications is Alzheimer disease (AD). The article [111]

reported the effects of artifact removal on the diagnosis of Alzheimer’s dis-
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ease. The authors applied three state-of-the-art artifact removal algorithms

to observe the effect on disease diagnosis and reported their outcome as the

fully-automated system can assist clinicians with early detection of AD, as

well as disease severity progression assessment. In [112], a multi-scale en-

tropy (MSE) based EEG complexity analysis was done for schizophrenia

patients where the artifactual epochs have been manually identified (those

are visually detectable) and rejected for calculating of MSE to extract EEG

features. No doubt, has it been an automated and reliable artifact removal

algorithm, the analysis could be more accurate and effective.

3.5 Discussion

3.5.1 Current Status

Although significant amount of efforts have been made to develop methods

for artifact detection and removal in EEG applications, it is still an active

area of research. Most of them handle single type of artifact, many of them

cannot work for single-channel EEG, some of them require training data,

some require a dedicated reference channel, some are designed for general

purpose applications that often leads to overcorrection of data and some of

them are not fully automated.

Currently available some of the major software plug-in GUIs are dis-

cussed below:
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3.5.1.1 FORCe

Fully Online and automated artifact Removal for brain-Computer interfac-

ing or FORCe is the most recent method reported in [113] that is based

on a unique combination of WT, ICA and thresholding. Compared with

two other state-of-the-art methods namely LAMIC and FASTER, FORCe

has been shown to outperform them significantly and is capable of remov-

ing different types of artifacts including eye blink, EOG and EMG. One of

salient features of FORCe is that it does not require any reference channel

and can operate on fewer number of channels which makes it suitable for

ambulatory EEG applications.

3.5.1.2 FASTER

FASTER stands for Fully Automated Statistical Thresholding for EEG

artifact Rejection which is an unsupervised algorithm for parameter esti-

mation in both EEG time series and in the ICs of EEG [114]. The achieved

sensitivity and specificity is > 90% for detection of EOG and EMG arti-

facts, linear trends and white noise in the contaminated channels.

3.5.1.3 LAMIC

Lagged auto-mutual information clustering (LAMIC) is a clustering algo-

rithm developed for automatic artifact removal from EEG [96]. The method

involves data decomposition by a BSS algorithm called TDSEP (Temporal

De-correlation source SEParation) which is a temporal extension of ICA.
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Then the components are clustered using the similarity of their lagged

Auto-Mutual Information (AMI). This is inspired from the fact that EEG

and artifacts are different from their temporal dynamics point of view. The

clustering procedure follows the usual steps of hierarchical clustering.

3.5.1.4 PureEEG

This is an automatic EEG artifact removal algorithm for epilepsy moni-

toring that based on a neurophysiological model by utilizing an iterative

Bayesian estimation scheme [115]. The method targets to remove most

of the artifact types and does not require any manual intervention. The

authors reported the performance of PureEEG from two independent clin-

ical experts perspective and it’s found to be significantly improving the

readability of EEG recordings after artifact removal.

3.5.1.5 OSET

OSET is an Open-Source Electrophysiological Toolbox for biomedical sig-

nal generation, modeling, processing, and filtering [116]. It can remove

cardiac artifacts from any bioelectrical signal including EEG. It can also

handle and remove EOG artifacts from multichannel EEG using techniques

based on semi-blind source separation.

3.5.1.6 MARA

Multiple Artifact Rejection Algorithm (MARA) is an open-source MAT-

LAB based EEGLAB plug-in which automatically identify the artifact-
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contaminated independent components for artifact rejection [17, 102]. The

main part of MARA is a supervised machine learning algorithm that learns

from labeled components by experts and utilizes six features based on spa-

tial, spectral and temporal domain. It can handle any type of artifact.

3.5.1.7 AAR

Automatic Artifact Removal (AAR), a MATLAB toolbox which can be in-

tegrated as a plug-in into EEGLAB, includes several artifact removal meth-

ods for removing only EOG and EMG artifacts [117]. In order to remove

only EOG artifacts, regression based methods such as Least Mean Squares

(LMS), Conventional Re-cursive Least Squares (CRLS), Stable Recursive

Least Squares (SRLS) and Algorithms based on the H norm are used. For

removing both EOG and EMG artifacts, spatial filters based techniques

have been adopted.

3.5.1.8 ADJUST

ADJUST, reported by [56] is an another EEGLab supported plug-in for au-

tomated EEG artifact detection. This algorithm is based on the combined

use of stereotyped artifact-specific spatial and temporal features to auto-

matically identify the artifactual ICs after ICA is performed. Four different

artifact types (i.e. eye blink, vertical eye movement, horizontal eye move-

ment and generic discontinuities) are chosen for extracting features such as

temporal kurtosis, spatial average and variance difference, maximum epoch
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variance, spatial eye difference, etc. The key feature of ADJUST is that it

is entirely automated and unsupervised with reported accuracy of 95.2%

in classifying all of the four artifacts. It can also successfully reconstruct

the clean ERP topographies from heavy artifact contamination.

3.5.2 Future Direction

Here we present the future direction for handling artifacts by raising real-

istic issues, proposing some ideas and providing recommendation based on

reviewing existing solutions.

3.5.2.1 Probability Mapping

From the above literature review of existing solutions for artifact handling,

one fact is obvious that artifacts are of different types and not all types will

play major role in all EEG-based applications. Sometimes, the clinicians

prefer manual event detection than automated algorithm for certain disease

diagnosis (e.g. seizure detection). However, such manual analysis is also

time-consuming. In such cases, if we can give the users an option to choose

which particular artifacts they want to be detected and/or removed with

what amount (%) for each epoch or data-segment of duration 1-sec (de-

pends on application), then the process would still be automated with tun-

ing facilities for the users either to turn-ON or remain OFF if not required.

In order to implement such facility, a probability mapping of artifacts can

be proposed (something similar to the idea of [118]) for each epoch of data
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based on some statistical features to quantify the probability of an epoch

to be artifactual. Then the user can opt for some threshold of probability

above which he/she may want to remove artifacts while below the thresh-

old, to preserve the epoch as it is. Thus it is possible to design automated

artifact detection and removal algorithm which is application-specific with

tuning facility for user. This would greatly enhance the signal analysis pro-

cess by avoiding the chance of removing important signal information. In

addition, it will reduce the unnecessary computational resources and time

by focusing on the desired artifacts for detection/removal (i.e. only those

types to be expected to affect the signal quality) and ignoring the rest of

them.

3.5.2.2 Standard Performance Evaluation

One of the important issues in evaluating the performance of any artifact

detection or removal method is that there is no universal standard quantita-

tive metric for the researchers to use. Most of the methods mentioned in the

literature use some qualitative time/frequency domain plot to evaluate the

artifact removal performance or evaluated by the clinical expert. Sweeney

et al. [119] proposed a recording methodology for accurate evaluation and

comparison between different artifact removal techniques/algorithms which

presented the EEG recordings of two separate but highly-correlated chan-

nels that allow to record both artifact-contaminated and artifact-free signal

simultaneously. It also presented a tagging algorithm employing two ac-
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celerometer for generating a quality-of-signal (QOS) metric which can be

used to for multiple purposes such as classification of motion artifacts, ac-

tivation of artifact removal technique only when required and identification

of the artifact-contaminated epochs. Thus this approach can provide accu-

rate measurements of quantitative metrics for fair performance evaluation.

However, such methodology still requires intervention to the recording tech-

nique and also extra reference channel for accelerometer data which may

not be feasible in every application (e.g. portable EEG recordings). Al-

though it is highly encouraged for the removal performance to be evaluated

by the domain experts, however, such evaluation varies from one expert to

another and still are manual and/or qualitative evaluation. Therefore, it’s

an urge to have a single standard evaluation method consists of both qual-

itative and more importantly quantitative metrics or ways for evaluating

the performance in a more realistic and fair manner.

3.5.2.3 Ground Truth Data

Another reason of not being able to evaluate artifact removal performance

fairly is that the lack of availability of ground truth data. It’s now equally

important to have a public database with sufficiently long-term EEG record-

ings without or minimal artifacts to be used as a ground truth data. Besides

such, an acceptable mathematical model to generate basic EEG rhythms

and finally integrate them to simulate an EEG sequence with standard

10-20 system EEG channels is required for quantitative evaluation of any



86

existing/future artifact removal methods.

In addition, more study is necessary to characterize as much as possible

of all artifact types, specially the motion artifacts for different movement

in an ambulatory environment [52, 54]. Thus it will be easier to label both

ground truth EEG and artifacts.

3.5.2.4 Recommendation

In order to choose the right artifact handling method, we need to consider

the particular application, required specification to be satisfied given the

computational resources and recording environment available. There are

EEG applications where only one or two types of artifacts affect the later

stage information decoding or processing, thus it’s not wise to try to go

for identifying and removing all the artifacts as other artifacts may not

(or minimally) harm particular signal processing purpose. If any reference

channel is available in the targeted application, then regression or adap-

tive filtering technique may be a preferred solution. In case of ambulatory

EEG monitoring, when number of channels are fewer, no reference channel

is available and wireless EEG transfer is preferred, then it is recommended

to use computationally cheaper method that can work without reference

and on single or few channels, e.g. wavelet based methods since BSS-based

methods may not perform satisfactory with fewer number of channels. In

some applications, if it’s possible to have some a-priori knowledge about

artifacts, some training data available, and if the application only requires
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to identify artifacts but not to remove them, then machine learning based

classifiers can be good choice. If the EEG recording involves high-density

channels, then PCA may be preferred to reduce the dimensionality before

applying any artifact removal methods, such as BSS-based methods. If the

application is based on offline analysis then we can afford some computa-

tional expensive techniques such as ICA or EMD.

3.6 Conclusions

An extensive analysis of the existing methods for artifact detection and

removal has been presented with their comparison, advantages and limita-

tions. The work on artifacts present in the typical EEG recordings is still an

active area of research and none of the existing methods can be considered

as the perfect solution. Most of the solutions do not consider the partic-

ular application, therefore, not optimized for that application. Moreover,

many of the removal algorithms, although provide good performance, are

only suitable for offline analysis because of their high computational com-

plexity and unsupervised nature. Some of them even require a dedicated

reference channel which is not feasible for some applications. Further stud-

ies are required to characterize the properties of commonly encountered

artifacts and to observe the effects of their contamination to the desired

later-stage signal processing/analysis. Some applications may only require

to identify artifacts and not to remove them, e.g. in applications where
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classification/identification of two classes are required. In such cases, a

more realistic mathematical model of the desired event(s) to be identified

is essential in order to easily ignore other non-brain signals (i.e. artifacts or

interferences). Finally, the future direction will be to provide application-

specific solution with reasonable complexity and optimized performance.
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Chapter 4

Artifact Detection and

Removal from In-Vivo Neural

Recording: Algorithm Design

This chapter introduces time series analysis of in-vivo neural record-

ing and then describes the proposed algorithm for artifact detection and

removal from such recordings. The algorithm relies on the spectrum char-

acteristics of the neural signals (i.e. LFP and neural spikes) for artifact

detection. It further applies stationary wavelet transform (SWT) to de-

tect possible artifactual regions from the decomposed wavelet coefficients.

Once artifacts have been detected, to restore neural signals, a modified

version of the existing universal-threshold value is proposed, which makes

the algorithm more robust.
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4.1 Introduction

As mentioned before in chapter 1 that there is no method/algorithm found

in the literature so far (to the best of our knowledge) to deal with artifacts

present at in-vivo neural recordings. In addition, the available artifacts

removal methods from other physiological signals (especially EEG) cannot

be directly applied on in-vivo neural recordings due to few factors. One of

them is the difference in signal characteristics (i.e. in-vivo neural signals

have broad spectrum with two completely separate signal of interest types:

spikes and LFP). Usually recording artifacts have large amplitudes, sharp

edges, and varied durations up to hundreds of ms, which are important

features for differentiating them from signals of interest, i.e. spikes and

field potentials. The frequency span of artifacts tends to be wide (from

a few Hz to several kHz) and the power spectra may exhibit significant

variability, because there are different evoking mechanisms of artifacts. As

a result, artifact waveforms do not tend to follow a specific template or

a statistical distribution which makes reliable detection of artifacts quite

challenging. In time domain, artifacts could have waveform features that

are similar to field potentials or spikes; while in the frequency domain, their

aggregated spectrum overlaps the signal frequency span (0.1 Hz to 5 kHz).

Moreover, artifacts may appear globally over multiple channels, or locally

over one single channel. Cross-channel analysis helps to identify and remove

global artifact at the cost of computational burden and storage requirement.
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Repeatability analysis will help to identify both local and global artifacts;

however, it introduces processing latency and causes problems in real-time

applications.

Therefore, in this chapter we first analyze the in-vivo neural recordings

in both time and frequency domain simultaneously to understand the sig-

nal characteristics and then propose an automatic algorithm to detect and

remove different types of artifacts from such neural recordings. Our wavelet

based algorithm relies on the hypothesis through data modeling and real

data analysis that the frequency bands of 150-400 Hz and >5 kHz are the

most prospective regions to detect artifacts. A synthesized database based

on recorded neural data and manually labeled artifacts has been built to

allow quantitative evaluations of the proposed algorithm. Some of the ad-

vantages of our proposed algorithm are: it is independent of artifact types,

does not require any reference channel and brings almost no distortion to

the signal of interest during artifact removal process. This chapter also

includes optimum parameter selection to achieve the best performance of

the algorithm.

4.2 Time Series Analysis of Neural Signal

Since neural signals are mainly non-stationary and non-linear time series

signals, in order to detect possible artifactual activities from neural signal of

interest it is necessary to analyze the recordings in both time and frequency
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domains simultaneously. We have made significant observations to detect

different types of artifacts and to justify the proposed method (e.g. band-

pass filtering at 150-400 Hz from spectrogram and coherence analyses) from

these time series analyses.

4.2.1 Spectrogram

A spectrogram is a time-varying spectral representation that shows how

the spectral density of a signal varies with time. The spectrogram of a

signal s(t) can be estimated by computing the squared magnitude of the

short-time Fourier transform (STFT) of the signal, S(t, f), as follows:

S(t, f) = |STFT (s(t))|2 (4.1)

As the artifacts overlap with neural signal both in temporal and spectral

domain, it is required to observe the spectrogram of the artifactual data

to get more insight of the dominant power of artifacts at a particular time

window. The spectrogram of a real artifact-contaminated neural data is

shown in Figure 4.1. The challenges in using STFT based spectrogram are

as follows:

• Spectrogram utilizes STFT in which both time and frequency are

represented in limited precision. The precision is determined by the

size of the window and the window size is fixed.

• Spectrogram requires huge amount of computational time and stor-

age. Therefore, although good insight for offline artifact analysis but
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Figure 4.1: Upper trace: real neural data contaminated with both type-1
and type-2 artifacts; Lower trace: Spectrogram of that neural data showing
the justification of using BPF at 150-400 Hz as there is significant artifact
power in this band corresponding to the temporal location of artifacts.

the algorithm may not be suitable for online detection.

• Can only be used to detect artifacts, removal requires different method.

4.2.2 Correlation Analysis

To detect the global artifact as shown in Figure 2.2 (left plot), if we ob-

serve the cross-correlation between all the channels in a particular electrode

(cross-channel correlation analysis) for that simultaneous temporal window,

the detection of such global artifact activities become obvious from their

cross-correlation coefficient values as given in Table 4.1.
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Table 4.1: Correlation coefficient between 8 different channels from a same
electrode recording shown in Figure 2.2 (left plot) to detect global type-0
artifacts.

4.2.3 Coherence Analysis

Coherence between two time series measures the association between them

in frequency domain, in other words it is the cross-correlation in frequency

domain instead of time domain. The coherence between two signals x(t)

and y(t) is a real-valued function that is defined as:

Cyy =
|Gxy|2

GxxGyy

(4.2)

where Gxy is the cross-spectral density between x and y, and Gxx and

Gyy the auto-spectral density of x and y respectively. The values of coher-

ence will always satisfy . The coherence between artifactual and artifact-

free neural data is plotted in Figure 4.2.
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Figure 4.2: Coherence analysis between clean reference data and artifact-
contaminated data which clearly shows that type-1 and type-2 artifacts can
be detected between 150 Hz to 400 Hz as the coherence is minimum at this
band while coherence for type-3 artifact becomes lower after few kHz.

4.3 Data Modeling

The recorded artifactual neural signal V (t) can be considered as super-

imposed from spikes, field potentials, neural interface noise, artifacts and

interferences [120]. Where the neural interface noise itself is contributed

by multiple sources including neuron noise, electrode-electrolyte interface

noise, tissue thermal noise and electronic noise. Therefore V (t) can be

written by the following formula:

V (t) =
I∑
i=1

Vi(t) + VLFP (t) +Nn(t) +NArt(t) +Nint(t) (4.3)

where Vi(t) is the activity of ith neuron within the recording radius r

(spike power is much larger than noise power), I is the total no. of neurons,
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Figure 4.3: Comparison in amplitude histogram of LFP for reference, arti-
factual and reconstructed signal.

VLFP (t) is the field potential, Nn(t) is the neural interface noise, NArt is

the artifactual event and Nint is the power line interference.

The LFP distribution of an artifact-free reference signal has significant

fluctuations due to non-stationary property but has a shape almost similar

to that of Gaussian when curve fitting is done. While the artifactual his-

togram failed to fit anywhere near to Gaussian because of its large tail at

one of the sides as shown in Figures 4.3 and 4.4. The reconstructed LFP

signal histogram after artifact removal shows the significant improvement

to fit the distribution almost similar to the original reference signal.
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Figure 4.4: Corresponding time course data for the histogram of three
signals shown in Figure 4.3.

4.4 Proposed Algorithm

Let’s assume r(n) as the recorded neural data at discrete-time instant n

and it can be expressed as:

r(n) = x(n) + a(n), (4.4)

where x(n) and a(n) are actual neural signals (i.e. spikes and field poten-

tials) and artifacts respectively. The proposed artifact removal algorithm is

composed of four stages including artifact labeling, verification, detection,

and reconstruction, as shown in Figure 4.5. In the following each stage of

the proposed block diagram is described in more detail.
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Figure 4.5: Overview of the proposed algorithm.

4.4.1 Artifact Labeling

Wavelet transform has been chosen to assist labeling artifacts. The reason

is that it is suitable for non-stationary signal analysis (e.g. neural signals)

and is a powerful tool to detect abrupt changes or localized events mostly

due to artifacts [78]. Among different wavelet transforms, the discrete

wavelet transform (DWT) is the simplest one in terms of computational

complexity1. However, the problem of DWT is that it is not translation

invariant. Therefore small shifts in a signal can cause large changes in

the wavelet coefficients and large variations in the distribution of energy

in the different wavelet scales [27, 123]. Hence, denoising with DWT often

introduces artifacts in the signal near discontinuities during signal recon-

struction [34]. One solution is to use stationary wavelet transform (SWT)

1The computational complexity of DWT isO(N) while the computational complexity
of SWT is O(NL) [121] using fast transform [122]. Here L is the number of decompo-
sition level and N is the signal length.



99

(i) Detail Coefficients Before Thresholding: D1, D2, …,D10 (j) Detail Coefficients After Thresholding: D1', D2', …,D10'

0 5 10 15 20 25

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 5 10 15 20 25
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 5 10 15 20 25
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 5 10 15 20 25
-0.2

-0.1

0

0.1

0.2

0.3

0 5 10 15 20 25
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25
-1

-0.5

0

0.5

1

1.5

0 5 10 15 20 25
-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25
-2

-1

0

1

2

3

0 5 10 15 20 25
-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20 25
-4

-2

0

2

4

6

0 5 10 15 20 25

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 5 10 15 20 25
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 5 10 15 20 25
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 5 10 15 20 25
-0.2

-0.1

0

0.1

0.2

0.3

0 5 10 15 20 25
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25
-1

-0.5

0

0.5

1

1.5

0 5 10 15 20 25
-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25
-2

-1

0

1

2

3

0 5 10 15 20 25
-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20 25
-4

-2

0

2

4

6

D1 D2

D4

D5

D3

D7

D9

D6

D8

D10

Type-3 Art. Type-3 Art.

Type-1 Art. Type-2 Art. Type-3 Art. Type-2 Art.

0 5 10 15 20 25
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

(a)
0 5 10 15 20 25

-12

-10

-8

-6

-4

-2

0

2

4

6

8

(e)

r(n): Artifactual Signal

xs(n): BPF at 300Hz - 5kHz

Type-3

Type-1 Type-2 Art.

Type-0

0 5 10 15 20 25
-12

-10

-8

-6

-4

-2

0

2

4

(g)

Approx. Coef. A10

0 5 10 15 20 25
-12

-10

-8

-6

-4

-2

0

2

4

(h)

0 5 10 15 20 25
-0.02

-0.01

0

0.01

0.02

0 5 10 15 20 25
-0.05

0

0.05

0 5 10 15 20 25
-0.05

0

0.05

0 5 10 15 20 25
-0.05

0

0.05

0 5 10 15 20 25
-0.1

-0.05

0

0.05

0.1

0 5 10 15 20 25
-0.1

-0.05

0

0.05

0.1

0 5 10 15 20 25
-0.2

-0.1

0

0.1

0.2

0 5 10 15 20 25
-0.2

-0.1

0

0.1

0.2

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0 5 10 15 20 25
-1

-0.5

0

0.5

1

0 5 10 15 20 25
-0.02

-0.01

0

0.01

0.02

0 5 10 15 20 25
-0.05

0

0.05

0 5 10 15 20 25
-0.05

0

0.05

0 5 10 15 20 25
-0.05

0

0.05

0 5 10 15 20 25
-0.1

-0.05

0

0.05

0.1

0 5 10 15 20 25
-0.1

-0.05

0

0.05

0.1

0 5 10 15 20 25
-0.2

-0.1

0

0.1

0.2

0 5 10 15 20 25
-0.2

-0.1

0

0.1

0.2

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0 5 10 15 20 25
-1

-0.5

0

0.5

1

D1'

D3'

D5'

D7'

D9'

D2'

D4'

D6'

D8'

D10'

New Approx. Coef. A10'

0 5 10 15 20 25
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

(b)

r’(n): Reconstructed Signal
0 5 10 15 20 25

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 5 10 15 20 25
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(d)

xh(n): HPF at 5 kHz

0 5 10 15 20 25
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 5 10 15 20 25
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(c)

xb(n): BPF at 150 – 400Hz

13.5 13.52 13.54 13.56 13.58 13.6 13.62

-10

-5

0

5

(f)

Spikes

Figure 4.6: An example of all the signals at different stages (as mentioned
in the proposed algorithm flow in Figure 4.5) in the same temporal domain
is provided. A 10-level SWT decomposition is performed to an artifactual
signal with Haar basis wavelet. (a): artifactual signal, r(n); (b): recon-
structed signal, r′(n); (c): xb(n) obtained from band-pass filtering r(n) at
300 Hz - 5 kHz; (d): A zoom-in version of (c) showing few spikes; (e):
xs(n) obtained from band-pass filtering rn at 150 Hz - 400 Hz; (f): xh(n)
obtained from high-pass filtering r(n) at 5 kHz; (g)-(h): The final approx-
imate coefficient before and after thresholding respectively; (i)-(j): The
detail coefficients before and after thresholding respectively.

which is translation invariant, as there is no down sampling of data involved

in the algorithm [27, 123, 34].

4.4.1.1 SWT Decomposition

The SWT is performed on the artifactual signal r(n) at level L = 10

with Haar as basis wavelet function2. Thus, two types of coefficients are

2A majority of motion artifacts appear in the form of abrupt changes in the amplitude
of the signal. Therefore, Haar is used as basis wavelet since due to its waveform shape, it
can possibly detect and localize such artifactual events and they appear with relatively
high amplitudes in the decomposed coefficients. The choice of level-10 decomposition is
done empirically by considering two facts: (i) the no. of signal components present in
the raw recordings and (ii) the trade-off between latency/storage and amount of detail
information extraction. Less than level-10 would give less detail information and more
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generated: approximate and detail coefficients that contain low and high

frequency information respectively as shown in Figure 4.2. The generated

wavelet coefficients at different levels denote the correlation coefficients be-

tween artifactual signal and the wavelet function. The artifactual events

will have larger coefficient values if they have higher correlation with the

wavelet function while smaller coefficients will be generated correspond-

ing to the actual neural activities. In order to perform thresholding, the

selected coefficients are the final approximate coefficient, A10 and all the

detail coefficients i.e. D1, · · · , D10. A10 consists of all low frequency com-

ponents (from 0 Hz to 19.5 Hz), such as electrode offset, some part of

information from LFPs, neuron noise and artifacts (e.g. type-0, type-1 and

type-2). While, D1, · · · , D10 contain the high frequency information such

as neural spikes, type-3 artifacts and sharp edges from artifacts of type-1

or type-2. Table 4.2 illustrates the frequency bands of different level of

coefficients and the corresponding neural signal bands. It reveals that even

in the decomposed coefficients, the artifacts can overlap with the neural

signals of interest. Therefore the threshold is chosen carefully in order

to detect and suppress possible artifactual activities from the decomposed

coefficients.

than level-10 would consume unnecessary time and storage.
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Table 4.2: The frequency bands of the respective SWT coefficients and
corresponding signal components for a 10-level decomposition. Here two
typical sampling frequencies for extracellular neural recordings are consid-
ered (i.e. 40 kHz and 30 kHz) and the maximum recording bandwidth is
assumed to be half of the sampling frequency.
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4.4.1.2 Threshold Calculation

The next step is to calculate a threshold value to detect the artifacts in the

wavelet domain. The choice of threshold value will decide both the amount

of artifact suppression and the amount of distortion to the neural signal

at the same time. One possible solution is to use the universal threshold

proposed by [34] which is given as follows:

Tj = αj
√

2 lnN, (4.5)

where N is the signal length and αj is the estimated noise variance for Wj

which is usually calculated by following formula [34]

αj =
median(|Wj|)

0.6745
. (4.6)

In (6.11) Wj is the wavelet coefficients at the jth decomposition level

(Wj = Aj for approximation coefficient and, Wj = Dj for detail coef-

ficient). Here, | · | denotes the absolute value of elements in Wj. The

constant denominator results in an unbiased estimate assuming the data
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are normally distributed [124]. However, this particular threshold is fixed

for each Wj and not optimal most of the time. By extensive testings, it has

been found that this threshold is not suitable for our application as it may

produce serious distortion to neural signals. Particularly for wavelet coeffi-

cients those contain components from spikes or when the neural recording

has severe large artifacts such that the data distribution violates from the

typical Gaussian fitting (a large tail in the histogram as shown in Figure

4.3)3. Hence it is proposed to include an extra parameter k to the original

universal threshold formula in a following way and the resultant threshold

modifies to

T ′j = kαj
√

2 lnN, (4.7)

where k = {kA, kD}, 0 < kA < 1, 1 < kD < 5, which comes from the

empirical observations (See sub-section 4.7.2). More precisely, k = kA is

selected for thresholding approximate coefficient at final level, here it is

A10 and select k = kD to threshold all the detail coefficients (Dj, j =

1, 2, · · · , 10).

The tuning of parameter kA depends on the data distribution as shown

in Figure 4.3. Since A10 contains both the LFP and some low-frequency

artifacts, so when the histogram of the data has large deviation from the

standard deviation (large tail on the histogram on either one side or both),

it is more likely due to presence of artifacts. Therefore a value less than 1

3The LFP distribution of an artifact-free reference data has significant fluctuations
due to non-stationary property but has a shape almost similar to that of Gaussian
when curve fitting is done. While the LFP distribution of an artifactual data fails to
fit anywhere near to Gaussian because of its large tail at one of the sides as shown in
Figure 4.3.
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is chosen for kA and if there is no such unusual tail present, then kA = 1

is chosen that makes the threshold exactly same as the original universal

threshold, i.e. T ′i = T1. The criterion for the choice of kA is given below

kA =


1 if max(|A10|) > m× sd(A10),

0 ≤ kA < 1 otherwise,

(4.8)

where sd denotes the standard deviation of A10. The value of m is based

on the parameter tuning and can be obtained from some initial several

seconds of incoming raw in-vivo data samples to update the threshold value.

From the empirical studies, the value of m is found as minimum of 5, i.e.

5 < m <∞ (See sub-section 4.7.2).

In order to decide the value of kD, power spectra of all detail coefficients

are studied and it is found that coefficients at level 3, 4, 5 and 6, i.e. D3, D4,

D5 and D6 have highest power around the neural spikes’ spectra and hence

these four levels contain spike information along with artifacts. Therefore

it is chosen to put more weight (kD > 1) on these coefficients and less on

the rest of the level of coefficients (i.e. D1, D2, D7, D8, D9 and D10) as

follows

kD =


1 < ki ≤ 5 i = 3, 4, 5 and 6,

1 otherwise,

(4.9)

where i denotes the detail decomposition level and the constant parameter

kD is chosen from the spike data histogram. The spikes present in neural

data with very large amplitudes influence the selection of kD towards higher

value while if the spike amplitude is normal, then from empirical studies it
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is found that the value of kD to be 2 to 3.

4.4.2 Filtering

Once the time indices are obtained from the decomposed coefficients after

applying modified threshold function, T ′i ; it is required to double check the

possible artifactual segments in order to separate artifacts from signals of

interest, especially from spikes. The use of filtering is inspired from the

spectrum characteristics of neural signal components: LFP and spikes (as

shown in Figure 2.5). Although the spectral band of in-vivo recordings

has a wide spectrum, there are two prospective bands, i.e. 150-400Hz

and >5kHz, where both LFP power and spike power are relatively low

[49, 7]. Thus, band pass and high pass filtering are performed at 150-

400Hz and 5kHz respectively for artifact detection4. It is assumed here

that the recording does not contain ripple band oscillations, which appears

around 100-300Hz, thus it is ignored [125].

The results after performing such filtering are shown in Figure 4.7. The

result of high pass filtering at 5 kHz is shown in Figure 4.7(b) where it is

4We found out that artifacts tend to have a wide spectrum that overlaps both field
potentials and neural spikes. Field potentials are aggregated or averaged from a large
number of synaptic activities within a proximity region of the recording site and fea-
ture a 1/fx power spectrum distribution where x is in between 1 to 3 [120]. As a rule of
thumb, at frequency beyond 150Hz, the spectrum of field potential becomes insignificant.
Extracellular neural spikes, on the other hand, are produced by ionic and displacement
currents during the propagation of action potentials, which have clear low-cutoff and
high-cutoff frequencies: the high-cutoff frequency is at several kHz, as sodium chan-
nels tend to open for a few hundred µSec or even longer; the low-cutoff frequency is
around several hundred Hz as potassium channels start to dominant after 1 ms and pull
the trans-membrane voltage back to its rest state. Consequently there are prospective
frequency bands to detect artifacts. One is at 150Hz - 400Hz region where both field
potentials and spikes have insignificant power. The other one is beyond 5kHz, which is
too fast even for neural spikes
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Figure 4.7: (a) Type-3 artifact contaminated neural data and (b) Effect of
HPF at 5 KHz for detecting type-3 artifact; Effect of band pass filtering at
150-400 Hz for detecting type-1 (c) and type-2 (d) artifacts.

evident that after high pass filtering; the high frequency artifactual event

becomes more separable from rest of the noise floor and hence can be de-

tected easily. Band pass filtering at 150-400 Hz is applied to separate type-1

and type-2 artifacts from both LFP and spikes since artifact power is suf-

ficiently large to be detectable compared to neural signal in this particular

band. The result is illustrated in Figure 4.7(c) and 4.7(d) where the artifact

edges become separable once band pass filtering is performed.

In order to detect spikes, the raw data is usually band-pass filtered

from 300 Hz to 5 kHz [126]. Denoted by xb(n), xh(n) and xs(n) as the

band-pass filtered, high-pass filtered and spike signals respectively and their

corresponding universal threshold values are calculated by

Tbp,hp ,sp =

(
median(|xb,h ,s |)

0.6745

)√
2 lnN, (4.10)
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These threshold values Tbp, Thp and Tsp with the time indices of artifactual

segments (provided by artifact labeling stage 4.4.1) are used to make the

decision of whether artifacts or signals (Stage 2 from Figure 4.5).

4.4.3 Detection

Denote IDi the time index for artifactual segment at decomposition level

i found from the earlier stage, the condition for separation of artifact from

neural signals is given by the following pseudo code

Separation of Artifacts from Signals

If (|xb(IDi)| < Tbp) or (|xh(IDi)| < Thp)

If (|xs(IDi)| > Tsp)

IDi is not artifact index

else

IDi is artifact index

end

else

IDi is artifact index

end

4.4.4 Signal Reconstruction

In the final stage, in order to reconstruct the signal, at first the coefficients

are thresholded once it is confirmed as artifacts from stage-3. Thus a new

set of coefficients, i.e. A′10, and D′1, · · · , D′10 are generated. Finally, inverse

stationary wavelet transform is applied to the new coefficients to restore

artifact-reduced neural signals.

The choice of threshold function is very important, as it influences the

amount of attenuation to the SWT coefficients. A most popular threshold-
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ing function is hard threshold that has a discontinuity which may produce

large variance to the reconstructed signal or in other words, output esti-

mate is very sensitive to small changes in the input data [124]. On the other

hand, there is soft threshold function that is continuous but has larger bias

in the estimated signal which results in larger errors. In order to over-

come the disadvantages of these two threshold functions, the non-negative

garrote shrinkage function is proposed in [124] which is a nice trade-off

between hard and soft threshold function and is given by

δGi
=


x |x| ≤ T ′i

x− T ′i
2

x
|x| > T ′i .

(4.11)

Where δGi
is the garrote threshold function at each decomposition level

of i. This function is less sensitive to input change, lower bias and more

importantly continuous. Therefore garrote threshold function is chosen

for our application. An illustration of better performance using Garrote

threshold function over hard threshold function while spike detection is

shown in Figure 4.8.

4.5 Experiments

To validate the proposed algorithm, extensive testings have been performed

on both real and synthesized data to facilitate both qualitative and quanti-

tative measurements and compared with other algorithms in the literature.

The data recording protocol is described below:
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obvious that garrote outperforms the hard threshold.
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Figure 4.9: Artifact removal algorithm applied to a raw in-vivo data
recorded from the hippocampus of a rat. The plot is the time course data
where both type-1 and type-2 artifacts are present.
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Figure 4.10: A Comparison in field potentials and spike data when there
are no visually detectable artifacts (A small data segment from Figure 4.9
after low-pass filtering at 200 Hz and band-pass filtering at 300 Hz - 5
kHz are performed to get LFP and spike data respectively). The proposed
algorithm nearly perfect reconstructs the original data when there is no
artifact present.

Neural recording data from in-vivo preparations are provided by Ed-

ward Keefer at Plexon Inc/University of Texas Southwest Medical Institute

and Victor Pikov at Huntington Medical Research Institute. For Keefers

data, the protocols are similar to [48, 120], where the subjects (rats) have

been anesthetized for acute experiments. CNT electrodes, microwire, and

electrode array have been used in experiments and connected to Plexon

OmniPlex neural data acquisition system. For Pikovs data: the 16-channel

electrode arrays with a nominal geometric area of exposed electrode tips

were purchased from Blackrock Microsystems. The array was chronically

implanted in the sensorimotor cortex and connected to a percutaneous con-
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nector mounted in the animal’s (monkey) head. The experiment protocols

are in accordance with the Institutional Animal Care and in compliance

with the United States Department of Agriculture (USDA) Animal Wel-

fare Act. We have been authorized by Edward Keefer and Victor Pikov to

utilize the recorded data for research and publication.

Synthesized data are prepared from in-vivo recordings. Data segments

without artifacts are used as ground truth data. Labeled artifacts by a

domain expert are used as artifact templates. Individual artifacts under

different templates are then simulated with different amplitudes, widths

and durations and finally superimposed onto the ground truth data for

quantitative assessment of algorithm performance.

4.5.1 Experiment on Real Data

Initially the proposed algorithm is tested on real in-vivo data sequences

contaminated with artifacts. Then both the data sequences before and after

artifact removal are plotted in the same trace of time domain (as shown in

Figure 4.9.) to observe whether it has removed the artifact or not. The

local field potentials and spikes are also plotted for both data sequences to

observe qualitatively (shown in Figure 4.10) how much distortion it brings

when there is no presence of visually detectable artifacts.
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4.5.2 Experiment on Synthesized Data

Different artifacts have been manually identified and extracted (neural data

segments contaminated with obvious visually detected artifacts) from real

in-vivo data and categorized each into one of the mentioned four types,

i.e. type-0, type-1, type-2 and type-3. Based on these extracted templates,

similar artifact templates are simulated with different amplitudes and du-

rations. An in-vivo neural data sequence of 100 second duration is chosen

which does not contain any visually detectable artifacts and termed it as

reference signal. Then the simulated artifacts are linearly added to the ref-

erence signal in different random positions with different amplitudes, edge

widths and durations to form a data sequence that is contaminated with

artifacts, it is referred to artifactual signal. The data synthesis process is il-

lustrated in Figure 4.11. Finally the proposed artifact removal technique is

applied on the artifactual signal and the resultant data sequence is termed

as reconstructed signal. An example of artifact removal is shown in Figure

4.12. As mentioned that the proposed method is applied to the artifactual

data to get the artifact-reduced reconstructed data which is more similar

to the reference data.

4.5.2.1 Efficiency Metrics

The measurement for quantitative evaluation of the algorithm is mainly

two types: one is to measure how much artifact has been removed and the

other one is to measure how much distortion it brings into the signal of
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Figure 4.11: Illustration of the synthesis process to generate artifactual
data.

interest. The first type of measurement includes two metrics: the amount

of artifact reduction in percentage, λ as mentioned in [33] and the amount

of increase in signal to noise ratio (SNR), ∆SNR for different artifact am-

plitude or artifact SNR (SNRArt). The second type of measurement is to

quantify the amount of signal distortion which includes: spectral distor-

tion, Pdis as defined in [26] and root mean square error, RMSE. The

former one refers to distortion in frequency domain and the later one mea-

sures the distortion in time domain. Also the efficacy of the algorithm is

evaluated in terms of ROC (Receiver Operating Characteristics) plot for

spike detection before and after artifact removal in comparison with the

reference signal. The calculations of the mentioned metrics are discussed
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Figure 4.12: Artifact removal example by the proposed method where the
artifactual signal (synthesized) is corrupted by all four types of artifact.
The top plot shows the three different time course signals of reference,
artifactual and reconstructed. The bottom plot is the zoom-in version of
the previous plot highlighted on the artifact affected regions.

below. Note that the following calculations can only be performed on syn-

thesized data. Assuming x(n), r(n) and r′(n) are the discrete time signals

of length N representing reference, artifactual and reconstructed signal re-

spectively. If the error signal before and after artifact removal are e1 and
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e2 respectively and calculated as follows:

e1(n) = r(n)− x(n), (4.12)

e2(n) = r′(n)− x(n). (4.13)

• λ: The reduction in artifact, λ is calculated using the following for-

mula [33]

λ = 100

(
1− Rref −Rrec

Rref −Rart

)
, (4.14)

Here, Rref denotes the auto-correlation of the reference signal at time

lag 1, Rart and Rrec are the cross-correlation between reference signal

with artifactual and reconstructed signal respectively.

• ∆SNR: Assuming the signals have zero mean, the ∆SNR is the differ-

ence in SNR before and after artifact removal is given by the following

formula [33]

∆SNR = 10 log10

(
σ2
ref

σ2
e1

)
− 10 log10

(
σ2
ref

σ2
e2

)
, (4.15)

where σ2
ref , σ

2
e1

and σ2
e2

be the variance of reference signal, error signal

before and after artifact removal respectively.

• RMSE: The root mean square error, RMSE is calculated as follows:

RMSE =

√√√√ 1

N

N∑
n=1

[e2(n)]2. (4.16)

• Pdis: Denote PSDRef (f), PSDArt(f) and PSDRecon(f) the power

spectral densities of reference signal, artifactual signal and recon-

structed signal respectively, the spectral distortion Pdis is calculated
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as follows

Pdis =

∑
(PSDRecon(f))2∑
(PSDRef (f))2

. (4.17)

• SNRArt: Artifact SNR is calculated considering artifact as signal and

reference neural signal as noise using the following formula

SNRArt = 10 log10

(
σ2
e1

σ2
ref

)
. (4.18)

• ∆TArt: It denotes the artifact duration out of total data length in

percentage and calculated as follows:

∆TArt(%) =
TArt
TTotal

× 100, (4.19)

where TArt and TTotal are the time duration of artifact and whole data

sequence respectively.

• ROC Curve: In order to evaluate the spike detection accuracy of a

ROC curve, the simple amplitude threshold based detection method

[127, 128, 129, 130] is used and compared with the reference signal.

The true positive rate (TPR) and false positive rate (FPR) are cal-

culated by following equations:

TPR =
TP

TP + FN
, (4.20)

FPR =
FP

FP + TN
, (4.21)

where TP , TN , FP and FN are the number of spikes detected as true

positive, true negative, false positive and false negative respectively.
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• ∆FPR(%) and ∆TPR(%): If FPRbef and FPRaft are the false pos-

itive rate before after artifact removal while TPRbef and TPRaft are

the true positive rate before after artifact removal respectively, then

the improvement in FPR, ∆FPR(%) and in TPR, ∆TPR(%) are

given by

∆FPR(%) =
FPRbef − FPRaft

FPRbef

× 100, (4.22)

∆TPR(%) =
TPRaft − TPRbef

TPRbef

× 100, (4.23)

4.6 Results and Discussion

4.6.1 Effect of Filtering

In Figure 4.14, an example of a ’Receiver Operation Characteristic’ (ROC)

curve for spike detection is plotted where the improvement due to the inclu-

sion of filtering along with SWT in comparison with only SWT is obvious.

As mentioned in section 4.4.2, the reason for inclusion of filtering (i.e. HPF

at 5 kHz and BPF at 150-400 Hz) is to preserve the spike information (i.e.

spike time and shape both) and thus able to distinguish from artifacts.

The decomposed wavelet coefficients are also thresholded adaptively and

selectively in order to preserve the spikes according to section 4.4.4. The

data corrupted with very large amplitude artifacts, especially type-3; re-

sult in a larger number of false negatives (FN). Since the presence of such
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Figure 4.13: The effect of filtering along with SWT in comparison with
only SWT during wavelet-denoising for artifact removal is obvious for the
time course neural sequences presented in the plots for raw artifactual data
with spikes, reconstructed with SWT only and reconstructed with SWT
along with filtering respectively.

artifacts increases the data rms (root mean square) and so does the detec-

tion threshold which eventually misses some of the true spikes due to their

relatively lower amplitude compared to artifacts. On the other hand, the

presence of type-3 artifacts and edges of type-1, type-2 artifacts result in

false positives (FP) during spike detection.

4.6.2 Quantitative Evaluation

The simulation for quantitative evaluation is performed for 100 iterations

where each iteration has random number of artifacts (ranging from 4-10)
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Figure 4.14: ROC curve evaluating neural spike detection accuracy to illus-
trate the effect of filtering in combination with SWT compared with only
SWT.
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Figure 4.15: Amount of distortion to neural signal in terms of spectral
distortion (top) and root mean square error, RMSE (bottom) before and
after artifact removal for different artifact SNR.

with random time durations (ranging from 200 µ Sec to 1 Sec) placed

in random locations on top of the reference signal. The artifact removal
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Figure 4.16: Amount of artifact removal in terms of Lambda, λ (top) and
amount of SNR improvement, ∆SNR (bottom) for different artifact SNR
after artifact removal is performed.

performance has been evaluated at different artifact SNR, SNRArt in order

to observe the effects of artifact strength on the removal efficacy. Figure

4.15 shows the spectral distortion with respect to different artifact SNR

for the data before and after artifact removal. The spectral distortion

for artifactual data increases almost linearly in log scale as the artifact

strength increase while the distortion for reconstructed data is somewhat

constant up to 15 dB SNR of artifact and increases very slowly as artifact

SNR further increases. The similar case can be seen for RMSE (which is

temporal distortion) that the increase is logarithmically for artifactual data

as artifact SNR increases while on the other hand, for reconstructed data it

is more or less constant over the entire range of artifact SNR. It is worth to

mention that in both cases, the improvement in terms of reduction in signal
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Figure 4.17: An example of overlapping of different artifact types in tem-
poral domain in a synthesized artifactual data.

distortion is very impressive after artifact removal process is performed.

By observing the performance of artifact removal in Figure 4.16, it can

be seen that, on average, approximately 80% of artifacts are removed over

the wide range of artifact SNR. The reason of no particular trend in the

graph may be due to the random positions of artifacts and their temporal

overlapping as shown in Figure 4.17. In some iterations, in spite of artifact

SNR being large, different types of artifact may overlap in temporal domain

which slightly reduces the efficacy of the removal method. The increase in

signal SNR with different artifact SNR follows somewhat linear trend with

a positive offset probably due to the overcorrection in the artifact regions

in some cases.
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The mentioned four performance metrics are also evaluated with re-

spect to the percentage of artifact duration out of the whole data segment

duration in temporal domain in order to observe the algorithm’s response

or sensitivity to the amount of artifact duration. It is expected that, the

higher the duration of artifacts (i.e. higher temporal overlapping with sig-

nals) present in a data sequence, the more difficult to remove them without

distorting the signal of interest. The relevant plots are shown in Figure 4.19

and Figure 4.18 where the amount of artifact removal and signal distortions

are plotted respectively with respect to the percentage artifact duration for

data before and after artifact removal.

Figure 4.20 shows the average signal-to-noise-and-distortion ratio (SNDR)

over the frequency band of neural signals for both artifactual and recon-

structed data to illustrate the improvement in SNDR.

4.6.3 Qualitative Analysis

The proposed algorithm is also applied to the real in-vivo datasets which

contain obvious artifacts. The reconstructed data after application of the

removal process is plotted in time domain to compare with the real data

qualitatively as previously shown in Figure 4.9.

4.6.4 Comparison with Other Methods

Table 4.3 summarizes the comparison between the proposed method and

other available methods used for artifact removal in physiological signals
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Figure 4.18: Amount of distortion to neural signal in terms of root mean
square error, RMSE (top) and spectral distortion (bottom) before and after
artifact removal for different artifact duration.

(e.g. EEG, fMRI, MEG, ECG, etc.). The recent review paper [82] reports

the techniques used so far in artifact removal and made an extensive com-

parison between them. Among these techniques, the proposed algorithm is

compared with wICA, wCCA, ICA, EMD-ICA and EMD-CCA (the meth-

ods are described in Figure 3.6). From the Table 4.3, it is evident that

the proposed method outperforms all of these five methods most of the

time in removal of the artifacts tested in this thesis. The possible rea-
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Figure 4.19: Amount of artifact removal in terms of lambda, λ (top) and
amount of SNR improvement, ∆SNR (bottom) for different artifact dura-
tion after artifact removal is performed.

sons are intuitive, ICA and CCA usually perform better for global artifacts

and fail to identify the local ones [49, 7]. So even wICA and wCCA work

satisfactory with EEG artifacts where at least few channels capture the

global artifactual events, they fail in identifying the in-vivo artifacts which

could also be local. The distortions brought by these algorithms are also

higher compared with the proposed method. Since both wICA and wCCA

are based on DWT, hence the algorithm induced spike-liked artifacts are

present after signal reconstruction (Figure 4.22). The best results among

all the methods have been highlighted in blue for each SNRArt level in
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Figure 4.20: SNDR comparison between signals before (artifactual) and
after (reconstructed) artifact removal. The SNDR values are averaged over
200 iterations.

Table 4.3.

Another problem with ICA and CCA related algorithms is the identifi-

cation of artifacts from the independent components (ICs or CCs) which is

first of all most of the time not automatic and secondly hard to identify as

long as sufficient no. of recording channels is unavailable. However, wCCA

seems to perform better than wICA since the sources are assumed to be

maximally uncorrelated in CCA rather independent as in ICA which is a

strong assumption. One important thing to note is that the performance

of the algorithms do not follow any specific trend with respect to artifact

SNR change, rather often it is found to be quite random. One possible

reason of such random results is that because of the random locations of

different artifact types, often they overlap in temporal domain, thus limits

the outcome of the artifact removal method.
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Table 4.4 presents the false positive rate and true positive rate for spike

detection before and after artifact removal of different methods compared

with the proposed one. It is also clear that the proposed method has

higher TPR and lower FPR than the other available methods. The values

are given in terms of improve in FPR and TPR. The improvement in

FPR, ∆FPR(%) and in TPR, ∆TPR(%) suggests that the no. of false

positive decreases and the no. of true positive increases after artifacts are

removed. The high negative values of ∆FPR(%) in Table 4.4 in other

methods at almost all threshold values indicate that those methods highly

induce spike-liked artifacts during the reconstruction process. However

the proposed method significantly reduces the false positive rate except for

threshold of 3 data RMS, even it is still much better than others. Regarding

the improvement on TPR, the proposed method also outperforms all other

methods significantly at all threshold levels. The best results have been

highlighted in blue for each threshold level.

The comparative computational time required to process 1 second of

in-vivo neural data is shown in Figure 4.21 where the proposed method

takes the least processing time in comparison with other methods. The

nearest competing time is from wCCA and the slowest of all methods are

those involving EMD based methods.
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Figure 4.21: Comparison of computational latency for artifact removal from
in-vivo neural recordings for processing of every 1 sec data segment.

4.7 Optimum Parameter Selection

We attempt to select the optimum mother wavelet and threshold param-

eters automatically in order to achieve best performance of the artifact

removal algorithm. The parameter optimization process for our proposed

algorithm includes three different steps including:

1) Optimization of Parameter Alpha for Best Mother Wavelet

2) Optimization of Parameter kA

3) Optimization of Parameter kD

4.7.1 Unsupervised Selection of Mother Wavelets

The purpose of parameterization is to optimize mother wavelet unsuper-

visedly in order to achieve the best performance both in terms of artifact

removal and signal distortion.
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Figure 4.22: Example of spike-liked artifacts produced after wICA algo-
rithm is applied on artifactual signal. The upper trace is the superimposed
representation of reconstructed signal on artifactual signal and the lower
trace is the spike data after and before artifact removal derived from the
upper-trace data after BPF is performed from 300 Hz to 5 kHz.

Figure 4.23: The decomposition and reconstruction structures of wavelet
filters

As we know the stationary wavelet transform is a time-scale represen-

tation method that decomposes signal f(t) into basis functions of time and

scale which are dilated and translated versions of a basis function ψ(t)
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which is called mother wavelet [78]. This ψ is defined by a low-pass filter,

h; and its corresponding high-pass filter, denoted by g; such that in case

of orthogonal wavelets, g can be calculated from h using the formula (The

wavelet filter structure is shown in Figure 4.23):

g[n] = (−1)1−nh[1− n] (4.24)

The SWT approximation and detail coefficients are computed by fol-

lowing formula [131]:

aj+1(t) =
∑
n

hj(n− t)aj(t) (4.25)

dj+1(t) =
∑
n

gj(n− t)aj(t) (4.26)

If the design of wavelet low-pass filter, h is expressed by all filter coefficients

in terms of L/2-1 (where L is filter length) free parameters then it can follow

unconstrained optimization, e.g. if L = 4 then only a single parameter α is

required for the filter design [131]. The low-pass filter h can be expressed

as:

h[0] = [1− cosα + sinα]/(2
2
√

2) (4.27)

h[1] = [1 + cosα + sinα]/(2
2
√

2) (4.28)

h[2] = [1 + cosα− sinα]/(2
2
√

2) (4.29)

h[3] = [1− cosα− sinα]/(2
2
√

2) (4.30)

The steps for optimizing the wavelet parameter α are as follows:
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Figure 4.24: Correlation value vs. alpha

Figure 4.25: Performance metrics (amount of artifact removal) vs. alpha
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Figure 4.26: Performance metrics (amount of distortions) vs. alpha

• Sweeping α from −π to +π with increment of π/6

• Computation of the filter coefficients, hα and gα for each

• Performing proposed artifact removal process with the wavelet filters,

hα and gα

• Select an optimization criterion either semi-supervised

– Measure the performance metrics and plot them against α. The

value of α corresponds to the best performance metrics is chosen

as optimal α, αopt. Or unsupervised as below

– Minimize the correlation between artifactual, xart(n) and recon-

structed xrec(n) signals only in the artifact-index regions to find
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optimal α, αopt1 Or

– Maximize the correlation between artifactual, xart(n) and recon-

structed xrec(n) signals only in the non-artifact-index regions to

find optimal α, αopt2

The results for choosing optimum α are shown in Figures 4.24, 4.25 and

4.26.

4.7.2 Calculation and Optimization of Threshold Parameters

The threshold parameters kA and kD are chosen based on artifact removal

results from few initial trial/training cycles. If we sweep both these two

parameters and evaluate the corresponding artifact removal performance

in terms of the correlation value between signals before and after artifact

removal, then we can get a rough idea of choosing the optimal values for

kA and kD. In order to do so, we assume that the correlations between

artifactual and reconstructed signals are higher in non-artifactual regions

and lower in artifact-contaminated regions.

If RXYArt
and RXYNon−Art

are the correlation values between artifactual

and reconstructed signals for artifact-contaminated regions (i.e. IDi is ar-

tifact index) and non-artifact-contaminated regions (i.e. IDi is not artifact

index) respectively, then the optimization problem will be as follows:

• Find kA for maximum RXYNon−Art
and minimum RXYArt

.

• Find kD for maximum RXYNon−Art
and minimum RXYArt

.
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Now if kAmax be the value when RXYNon−Art
is maximum and kAmin

be

the value when RXYArt
is minimum, then the optimal value of kA (i.e. kAopt)

is chosen as the average of these two values as given by following equation.

kAopt =
kAmax + kAmin

2
(4.31)

Similarly the optimal value of kD, (i.e. kDopt) is calculated as follows:

kDopt =
kDmax + kDmin

2
(4.32)

The value of m can be averaged over few initial trials of 1-sec data segment

from the following equation:

m =
1

N

N∑
j=1

max(|A10|j)
(sd(A10)j

. (4.33)

4.7.2.1 Optimization of kA and kD

In order to optimize the threshold parameter k, we follow the below steps:

• Sweep parameter kA from 0 to 1 and calculate the threshold Ti to

apply for approximate coefficient, A10.

• Apply the artifact removal process for each value of Ti (in other word

for each value of kA)

• Sweep parameter kD from 1 to 5 and calculate the threshold Ti to

apply for detail coefficients, D1−D10.
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Figure 4.27: Correlation value vs. kA

• Apply the artifact removal process for each value of Ti (in other word

for each value of kD)

• Find the values of kA and kD correspond to the best performance

metrics and hence choose the optimal kAopt and kDopt

The results for choosing optimum kA are shown in Figures 4.27 and 4.28

while for parameter kD, the results are found in Figures 4.29 and 4.30.

4.8 Conclusion

In this chapter, we proposed an algorithm for artifact detection and re-

moval which is based on the stationary wavelet transform with selected

frequency bands of neural signals. The selection of frequency bands is based
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Figure 4.28: Performance metrics vs. kA

on the spectrum characteristics of in-vivo neural data. Robustness of the

proposed algorithm is further improved by a modified universal-threshold

value. Both real and synthesized data have been used for testing the pro-

posed algorithm in comparison with other available algorithms. Quanti-

tative results showed that the proposed algorithm outperforms the others

in removing artifacts reliably without distorting neural signals. Therefore,

this work is expected to be useful for future research on proper preprocess-

ing of in-vivo neural signals. However, it also requires for further obser-

vations on experimental data to identify other artifacts (if any) and more

importantly to model their sources, which is a non-trivial task. Our future

work includes further optimization of the proposed algorithm and imple-

mentation for real-time applications.
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Figure 4.29: Correlation value vs. kD

Figure 4.30: Performance metric, SNDR vs. kD.
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Table 4.3: Quantitative comparison of proposed method with other meth-
ods on artifact removal for different artifact SNR (SNRArt).

SNRArt (dB) Artifact Reduction, λ, (Ideal value = 100)
Proposed wICA wCCA ICA EMD-ICA EMD-CCA

5 58 30 45.5 46.45 -1.82 9
10 85 8 40 33.1 -3.8 3.4
15 90 -1 37 38.2 22.25 1.3
20 60 5 29 25.1 26 16
25 18.5 -3.5 8.85 17.25 -5.5 4.2

SNRArt (dB) Signal SNR Improvement, ∆SNR
Proposed wICA wCCA ICA EMD-ICA EMD-CCA

5 7.5 4 0.5 6.67 0.02 0.6
10 16 6.2 5 8 0.05 2.93
15 20 5 9.8 12.3 12.4 3.05
20 18 5.5 15.2 13.9 9.5 4.58
25 17.6 5.4 13.1 13.3 3.5 5.1

SNRArt (dB) Improve in Spectral Distortion
Proposed wICA wCCA ICA EMD-ICA EMD-CCA

5 49.5 - 13.03 -4.17 -1.21 -5.35 -3.5
10 184 - 23 -7 -2.2 -10.5 -9
15 4.88e3 -25 -3.95 -2.52 -1.0 -70
20 5.34e4 -36.4 -1.92 -1.4 -9.6 -37.5
25 5.65e5 -40 16.15 5.69 -164.5 -60.48

SNRArt (dB) Improve in RMSE
Proposed wICA wCCA ICA EMD-ICA EMD-CCA

5 0.02 0.06 2.1e-3 0.023 1.6e-4 3.6e-3
10 0.044 0.082 -0.05 0.037 0.002 7e-3
15 0.102 0.10 0.07 0.085 0.08 0.016
20 0.17 0.098 0.145 0.164 0.137 0.06
25 0.32 0.114 0.28 0.243 0.031 0.12
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Table 4.4: Improvement in FPR and TPR for proposed method in com-
parison with other methods for different data RMS thresholds.

Trh, Data RMS Improve in Avg. FPR (%)
Proposed wICA wCCA ICA EMD-ICA EMD-CCA

3 73.89 -1.68e3 -833.3 -241.17 -185.71 -57.14
4 95.24 -1.4e3 -699.6 -783.33 -587.5 -553.85
5 93.41 -1.28e3 -522.2 -1.02e3 -400 -1.16e3
6 90.91 -1.1e3 -474.7 -880.0 -337.5 -1.19e3

Trh, Data RMS Improve in Avg. TPR (%)
Proposed wICA wCCA ICA EMD-ICA EMD-CCA

3 30.63 -92.21 -98.54 -84.93 -16.16 -5.93
4 14.93 -76 -98.0 -27.45 -34.37 -10.71
5 1.5 -91.43 -97.14 -56.41 -31.82 -31.82
6 10.46 -97.35 -96.3 -85.71 -71.43 -44.83
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Chapter 5

Artifact Reduction from Scalp

EEG for Epilepsy Seizure

Monitoring: Algorithm Design

This chapter introduces a method to reduce artifacts from scalp EEG

recordings to facilitate seizure diagnosis/detection for epilepsy patients.

The proposed method is primarily based on stationary wavelet transform

and takes the spectral band of seizure activities (i.e. 0.5 - 29 Hz) into

account to separate artifacts from seizures. Different artifact templates

have been simulated to mimic the most commonly appeared artifacts in real

EEG recordings. The algorithm is applied on three sets of synthesized data

including fully simulated, semi-simulated and real data to evaluate both the

artifact removal performance and seizure detection performance. The EEG

features responsible for the detection of seizures from non-seizure epochs
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have been found to be easily distinguishable after artifacts are removed

and consequently the false alarms in seizure detection are reduced. Results

from an extensive experiment with these datasets prove the efficacy of the

proposed algorithm, which makes it possible to use it for artifact removal

in epilepsy diagnosis as well as other applications regarding neuroscience

studies.

5.1 Introduction

Approximately 2% of the world population suffer from epilepsy seizures.

The occurrence of seizure is almost uncertain which is the main cause of

disability associated with epilepsy [100]. To reduce this uncertainty, a

recording system that provides early and accurate seizure detection with

immediate warning is highly desired. One way to achieve that is to use long-

term EEG recording to detect the characteristic EEG waveforms during

seizures. The prolonged EEG recordings not only can increase the chance

of detecting an ictal event (seizure) or an interictal epileptic discharge, but

also useful in the diagnosis of non-epileptic paroxysmal disorders compared

to a routine EEG. Unfortunately, EEG recordings are often contaminated

by different forms of artifacts such as artifacts due to electrode displace-

ment and pop-up, motion artifacts, ocular artifacts and EMG artifacts

from muscle activity, which reduce the accuracy of recorded EEG signal.

Besides, some artifacts may increase the false positive rate during seizure
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detection while some certain types of seizures can be misdiagnosed as non-

epileptic events when they are submerged/masked under artifacts. Thus,

in order to correctly diagnose epilepsy, it is extremely important to remove

such offending artifacts automatically, prior to seizure detection. However,

automatic detection and removal of artifacts in such applications is a great

challenge since the artifacts overlap with background EEG rhythms and

seizure events in both temporal and spectral domain. On the other hand,

the artifacts are of various types related to their origins, waveform shapes,

frequency characteristics which make it difficult to differentiate them from

the signal of interest.

Many traditional approaches have been proposed to remove or attenuate

artifacts from recorded EEG signals [19, 22, 23, 26, 27, 33, 36, 35, 34, 38,

39, 40, 22, 23, 44, 55, 58, 59, 60, 64, 65, 66, 67, 68, 77, 84, 85, 69, 86,

87, 88, 89, 90, 91, 92, 93, 94, 95, 103, 109, 132, 133, 134, 135, 136, 137,

138]. The most widely used methods for attenuating artifacts in EEG

signals are based on blind source separation such as independent component

analysis (ICA) and canonical correlation analysis (CCA) [19, 33, 36, 35,

34, 38, 58, 87, 88, 89, 90, 91, 92, 103, 109, 139, 140]. The BSS-based

algorithms assume that the observations are linear mixing of the sources

and the number of sources is equal or less than the number of observations.

Another assumption is that the sources have to be either independent for

ICA based methods or maximally uncorrelated for CCA based methods.

Beside these assumptions, the usefulness of BSS-based methods are affected
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by some issues as follows:

• Some ictal events can only be found in few channels if it is a focal

seizure.

• Some of the artifacts are localized in a single channel, resulting in

failure to identify the artifact source in the cross-channel analysis.

• Detection of artifactual independent component is not automatic or

semi-automatic given that the reference channel that records the ar-

tifactual source separately is available [104, 141].

• The artifactual independent component is often found to be mixed

with neural signals and therefore complete rejection of such IC re-

sults in serious signal distortion. Hence, over correcting the EEG

recordings.

The methods in [19, 59, 95, 97, 142, 143] rely on adaptive filtering to remove

artifacts from EEG signal. These methods are applicable only when there

is any reference artifact channel available. However, due to diversity of

artifacts for different movements and in different surrounding environments,

such reference channel is not feasible. Other filtering methods like Kalman,

Wiener and Particle filters, however, do not require an extra reference

channel, but they need a-priori user input to function which may not be

feasible always [82]. In addition, some other limitations of the existing

artifact removal methods are:
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• Most of the methods remove single type of artifact and unable to

handle other types e.g. ocular artifact [40, 16, 19, 36, 144, 145, 146,

141], motion artifact [51], ecg artifact [147] and muscle artifact [34,

148, 140].

• Many studies have proposed methods to remove artifacts for general

purpose [65, 141, 86, 106, 92, 58, 68, 60] and they do not consider spe-

cific target application. As a result, it brings unnecessary complexity

in their algorithms and also results in over-correction of data.

In this chapter, we develop an automated algorithm to remove arti-

facts as much as possible without distorting the signal of interests. The

proposed algorithm is based on the stationary wavelet transform (SWT)

and takes the spectral band of seizure activities into account to separate

artifacts from seizures. The reason of choosing wavelet transform over

other methods (e.g. BSS, EMD, Adaptive Filtering, etc.) is its ability to

decompose single-channel EEG data into different frequency bands with

high temporal resolution followed by easier denoising technique[78]. This

is done with reasonable computational complexity compared with BSS or

EMD and without requiring any reference channel unlike adaptive filter-

ing. In addition, the choice of SWT (also known as Undecimated Wavelet

Transform) over discrete wavelet transform (DWT) is because of the fact

that SWT is translational-invariant since it involves up-sampling of the fil-

ter coefficients instead of down-sampling unlike in DWT [149]. Therefore

small shifts in a signal can’t cause large changes in the wavelet coefficients
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and large variations in the distribution of energy in the different wavelet

scales in SWT unlike in DWT and consequently denoising with DWT often

results in introducing of artifacts in the signal near discontinuities during

signal reconstruction [27, 123, 34].

The proposed method is evaluated for both real and simulated EEG

data where both data consist of epileptic seizures and artifacts. By ex-

tensive testing, it has been shown that the proposed algorithm can reduce

artifacts to an extent that can significantly increase the performance of a

seizure detector/classifier, which proves its suitability to use in such EEG

applications for epilepsy diagnosis.

The rest of this chapter is organized as follows. A brief introduction

to EEG signals with epileptic seizures is described in Section 5.2. Section

5.4 provides the methods of data collection and synthesis. Section 5.3

describes the proposed method. In Section 5.5, formulation and analysis for

performance evaluation are presented. Section 5.6 provides the simulation

results and discusses about the performance of the proposed algorithm.

Optimum parameter selection is mentioned in Section 5.8. Section 5.8

gives concluding remarks.

5.2 EEG Characteristics

EEG is the recording of the electrical activities from surface/scalp of the

brain and typically described in terms of rhythms and transients. It is
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Table 5.1: The frequency bands of EEG rhythms and seizure activities.

usually corrupted by different noise/interferences and artifacts. Although

seizure and artifacts both are fallen into transient category, seizure has

more rhythmic oscillation than artifacts or in other words, artifacts are

more transient than seizure events.

5.2.1 EEG Rhythm

The rhythmic activity of EEG is divided into bands by frequency. The

most common EEG rhythms are Delta, Theta, Alpha and Beta waves.

Recently a relatively high frequency Gamma wave comes into EEG analysis

in certain cases. Also Mu wave is considered as ’normal variant’ because of

its disassociation with dysfunction or disease in spite of having uncommon

statistics. The corresponding frequency bands of these waves are given in

Table. 5.1.
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Figure 5.1: An example of real seizure segment marked by the epilepsy
specialist from MIT-CHB database.

5.2.2 Epileptic Seizures

Epileptic seizure is a recurrent, unprovoked, brief event of abnormal or

excessive synchronous activity in the brain which may last from few seconds

to few minutes [100]. The waveform pattern of epileptic seizures differ from

seizure type to type, even may differ from patient to patient of same seizure

type. The most familiar epileptic seizure pattern is the spike-and-wave

oscillation. In general, the seizure event is characterized by its rhythmicity,

waveform morphology and evolution of both amplitude and frequency over

time. The frequency band of most of the seizure types lies between 0.5 Hz

and 29 Hz [150, 151]. Although some recent literatures report the presence

of high-frequency oscillation (HFO: band 80 - 200 Hz) and fast ripple (200 -

600 Hz) as an indication of seizure characteristics and detection [152, 153],

however such signal components are difficult to record/sample with the
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Figure 5.2: The overall process flow of the proposed method.

typical routine scalp-EEG setting which has a sampling frequency of the

order of few hundred Hz (e.g. usually 256 Hz). In this thesis, since we

only consider the sampling frequency no more than 512 Hz in routine scalp

EEG, therefore such HFO and fast ripples are ignored. An example of

epileptic seizure marked by clinician is shown in Figure 5.1.

5.3 Proposed Algorithm

The first priority of the proposed artifact removal algorithm is not to distort

any seizure waveforms at any cost and then (i.e. next priority) to remove

artifacts as much as possible. The proposed algorithm has total four stages

out of which stage-0, i.e. reference generation can be obtained offline prior

to the incoming of EEG data. A block diagram for process flow of the whole

method is shown in Figure 5.2. The rest of the stages can only function

during the incoming stream of data. The description of the stages are given

below.
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5.3.1 Reference Generation

This stage generates a reference seizure epoch of length N (i.e. duration of

N/Fs second) either from an available seizure-type specific labeled seizure

database or can be obtained from simulating a particular seizure-type epoch

by simple mathematical model. For example, the neonatal seizure events

can be simulated from a free online database available at [154]. This EEG

simulator has mainly two parts: a background simulator and a seizure

simulator [75, 76]. On the other hand, if a seizure-type specific database

(epilepsy patient database) is available where the seizure events are labeled

by the clinicians, then we can also use such database to generate the refer-

ence seizure to be used for subsequent stages. However, some preprocessing

steps are necessary before starting to use such database. One of them is

to band-pass filter the raw database from 0.5 Hz to 30 Hz to eliminate

other signal components and to amplify the desired seizure activities (since

frequency band of seizure is 0.5∼29 Hz [150, 151]. Let xbp be the bandpass-

filtered epoch which will be utilized in stage-3 for similarity check.

5.3.2 Preprocessing

To begin with, let xraw(n) denote the sampled raw EEG signal which is

sampled at Fs Hz where n = {0, 1, 2, · · · } is the discrete-time index. We

assume that the power-line interference of 50/60 Hz and the baseline of raw

EEG have already been removed prior to this preprocessing stage. In the

preprocessing, the incoming signal is firstly divided into non-overlapping
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epochs with size of N . Then, the jth epoch (j ≥ 1) is given by

xj =



xraw(jN − 1)

xraw(jN − 2)

...

xraw(jN −N)


(5.1)

Note that the choice of epoch duration plays an important role in both

amount of artifact removal and amount of distortion made to the signal

of interest (i.e. seizure events)1. If N is too low (e.g. N
Fs
< 1 sec.), then

such short duration epoch may not represent seizure waveform properly

(the typical duration of seizure event may be several seconds in general)

and likely to be confused with artifact waveform (artifacts tend to be more

transient than seizure). When N is too high (e.g. N
Fs
> 5 sec.), then there

is high chance that lot of artifacts will be missed to be detected and hence

will lower the amount of artifact removal. In our algorithm, we have found

N
Fs

as 3-sec to be optimum after trying different values empirically 2

After segmentation, each epoch is passed through a high-pass filter of

1In addition, in case of automated seizure detection method to work after our pro-
posed algorithm is applied, the value of N will determine the minimum time delay for
seizure detection after its onset. This epoch by epoch processing will allow almost no
distortion to signal of interest with the penalty of less amount of artifacts to be removed.

2although EEG signal is non-stationary but it can be considered as stationary for
shorter duration epochs (e.g. 1 sec). Therefore for each of such epoch, the statistical
properties of time-frequency representation achieved by SWT can be considered as sta-
tionary too. Now, sometimes there are some slow artifacts (e.g. ocular or movement
artifacts) that last for > 1 sec, e.g. 2-3 sec. So in order to capture the full duration
of artifacts the epoch size may be required to more than 1 sec, i.e. 2 or 3 sec. Again,
if the epoch size is too large (e.g. > 3 sec), then the stationary assumption of EEG
will no longer valid, and consequently brings unavoidable errors in detection followed
by removal of artifacts. Another point to note that, in order for automated seizure
detection to work in real-time processing of epilepsy data, the epoch size cannot be
too long; otherwise it would create non-acceptable amount of delay in seizure detection
applications.



149

Table 5.2: The frequency bands of wavelet coefficients after performing
level-8 SWT on the raw EEG data which has a typical sampling frequency
of 256 Hz. Coefficients that correspond to the seizure activities (0.5 Hz ∼
30 Hz) are from d3 to d8.

30 Hz to obtain signals which likely to have least seizure information3

but contain high frequency artifacts and gamma waves. Then, for every

filtered epoch hp its corresponding universal threshold [34] is calculated.

The reason, computation and use of such threshold will be discussed in

stage-3. Finally, both the high-pass filtered epoch and threshold value are

passed to stage-3 for double check to decide whether an epoch is artifactual

or seizure.

5.3.3 Wavelet decomposition

Wavelet decomposition and subsequently removing unwanted artifacts by

applying threshold is a familiar denoising process in biomedical signals

[123]. Usually, the denoising process refers to removing high frequency

noise by thresholding the detail coefficients after wavelet decomposition.

However, in this thesis, by using the term denoising, we refer to removing

artifactual components from neural signals in the wavelet domain, irre-

spective of whether it is high-frequency or low-frequency artifacts. The

objective of this stage is to decompose and analyze the raw epoch with a

3This is because seizure activities lie between 0.5-29 Hz band [150, 151].
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reasonable time-scale resolution in wavelet domain for possible identifica-

tion of artifactual components in the later stage. To this end, stationary

wavelet transform is performed on the epochs {xj}j≥1 with level-8 decom-

position by Haar as basis wavelet which results in final approximate aj,8

and detail coefficients dj,1, dj,2, · · · , dj,8. Although there are many types

of wavelet transform (e.g. DWT, CWT, SWT, etc.), we chose SWT for

its advantage of being translational invariant [123]. The choice for level

of decomposition is mainly inspired from the bandwidth of EEG signal

(i.e. 0.05 - 128 Hz) and dominant frequency band of seizure activities (i.e.

0.5 - 29 Hz) in order to have enough number of frequency sub-bands to

make decisions on where to denoise carefully and where not. Figure 5.2

shows the frequency sub-bands of the decomposed detail coefficients and

the final-stage approximate coefficient after 8-level SWT is performed on

the raw EEG data. It is clear that {dj,3, · · · , dj,8} correspond to the seizure

frequency band and hence during denoising process, we need to be very

careful to handle these coefficients. The other three coefficients, i.e. dj,1,

dj,2 and aj,8 can be denoised by applying the modified universal threshold

directly without requiring the decision stage.

5.3.4 Denoising

We use non-negative garrote shrinkage function during denoising since it

has some appealing properties of being less sensitive to input change, having

lower bias and being continuous [124]. This is a nice trade-off between soft
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Table 5.3: Pseudo code for the separation of seizures from artifacts. The
decision is made by the similarity based thresholding.

and hard threshold function in terms of amount of artifact removal and

signal distortion4 and is given by

g(j, `) =


di,j |dj,`| ≤ tj,`

t2j,`
dj,`

|dj,`| > tj,`.

(5.2)

where g(j, `) is the garrote threshold function at each decomposition level

of ` for epoch j, and tj,` denotes the threshold value. To denoise the crit-

ical coefficients {dj,3, · · · , dj,8}, we have used modified universal threshold

reported by [7]

t′j,` = Kαj,`
√

2 lnN, (5.3)

4It is from the fact that hard threshold function is discontinuous that produces large
variance (i.e. very sensitive to small changes in the input data) and hence it induces
artifact itself when there is a spike-like transient artifacts. On the other hand, soft
threshold has large bias in the denoised signal which results-in under-correction of ar-
tifacts. Therefore we decided to choose Garrote threshold function which is a balanced
approach between hard and soft threshold and does not have the mentioned disadvan-
tages [124].



152

where in (6.10) N is the length of epoch and αj,` is the estimated noise

variance for wj,` which is usually calculated by following formula [34]

αj,` =
median(|wj,`|)

0.6745
. (5.4)

where wj,` is the wavelet coefficient at the `th decomposition level (i.e.

wj,` = aj,` for approximation coefficient and wj,` = Dj,` for detail coeffi-

cient.). The new parameter K in (6.11) comes from the empirical observa-

tions [7]. It is given as

K =


KA (0 < KA < 1) for thresholding aj,8

KD (1 < KD < 3) for thresholding dj,`

(5.5)

where, K = KA is selected for thresholding approximate coefficient aj,8 and

select K = KD to threshold all the detail coefficients (dj,`, ` = 1, 2, · · · , 8).

The tuning of parameter K is discussed in the previous Chapter-4 under

sub-section 4.7.2.

5.3.5 Decision

The most important part of our artifact removal algorithm is stage-3, i.e.

Decision. Depending upon this stage, the decision of whether an epoch is

to be detected as artifactual or seizure is made. In addition, if there is

possibility for an epoch to be both artifactual and seizure, how carefully

that particular epoch to be denoised to remove artifacts, is also decided in

this stage. The first step of this stage is to measure the similarity between

epochs of decomposed coefficients {dj,3, · · · , dj,8} coming from stage-2 and

reference epochs of xbp coming from stage-0. The similarity is measured
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in terms of either correlation value or mutual information. Depending on

the similarity values, we choose two levels of threshold: one is upper limit

Thigh and the other one is lower limit Tlow. Hence three conditions arise

which results in three decisions: if it is high likelihood to be a seizure,

then denoising is not performed on that epoch; if it is in between seizure

and artifacts, then we carefully denoise the epoch and finally if it is least

likely to be seizure then we fully denoise that epoch. A pseudo code for

this decision stage is provided in Table 5.3. To double check apart from

the similarity based decision, we also take input from the output of stage-1

where we have a high-pass filtered epoch and its threshold value. Since we

assume that the epoch xhp is less likely to be seizure and most likely to be

artifacts if the value exceeds the calculated threshold value Thp, so if any of

the three decisions made from similarity based condition contradicts with

this hypothesis, then to be in the safe side, the epoch is not denoised in

order to preserve the seizure events all the time. However, in such case,

where the epoch is actually artifactual and not seizure, but due to the

decision made not to denoise the epoch, we pay the penalty of less artifact

reduction.

5.3.6 Reconstruction

In the final stage of reconstruction, based on the decision stage, we either

apply thresholding (fully or carefully) or let the coefficients {dj,3, · · · , dj,8}

remain same. Finally with all the new set of coefficients obtained from
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stage-2 (i.e. d′j,1 - d′j,2and a′j,8) and the ones obtained from the first step of

this stage (i.e. {d′j,3, · · · , d′j,8}), we apply inverse SWT to reconstruct the

EEG epochs. Thus a new sequence of data so called reconstructed data is

obtained.

5.3.7 Overall Process Flow

Artifact removal steps are described in brief as below:

• Segmentation of single-channel raw EEG data sequence into epochs

of length N .

• Performing SWT with Haar basis on the epoch to generate 8 levels

of decomposed coefficients

• Denoising the final approximate coefficient (aj,8) with modified uni-

versal threshold to get a new coefficient a′j,8

• Generating a simulated seizure segment of length N to use as a ref-

erence. This epoch is band-pass filtered at 0.5∼30 Hz.

• Selecting some specific detail coefficients (i.e. {dj,3, · · · , dj,8}) to be

eligible for correlation-based thresholding whose frequency bands cor-

respond to the bandwidth of seizure activities (i.e. 0.5∼29 Hz). Such

selection is dependent on both the sampling frequency of the scalp

EEG (i.e. Fs = 256 Hz in this thesis) and the number of decomposi-

tion level (i.e. in our case it is 8).
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• Calculating the cross-correlation coefficient or mutual information be-

tween each epoch of detail coefficients from level 3 to 8 ({dj,3, · · · , dj,8})

and the reference seizure epoch.

• Thresholding the detail coefficients ({dj,3, · · · , dj,8}) based on the cor-

relation coefficients calculated with the condition that for higher/significant

values of correlation, we carefully denoise the epochs to remove arti-

facts (i.e. higher value of threshold) and for lower/insignificant values

of correlation, we perform as much thresholding as possible (i.e. lower

values of threshold).

• Denoising the 1st two-levels of detail coefficients (dj,1 and dj,2) directly

with the modified universal threshold

• Performing the inverse transform of SWT with the new set of wavelet

coefficients (a′j,8 and {d′j,3, · · · , d′j,8) to reconstruct the EEG epochs

with reduced artifacts.

5.4 Methods and Experiments

5.4.1 Data Collection

Real EEG recordings are downloaded from CHB-MIT Scalp EEG Database

[155] which was collected from the Children’s Hospital Boston. The database

consists of EEG recordings from pediatric subjects with intractable seizures

and the patients were monitored for up to several days. The signals are
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Figure 5.3: EEG experiment performed.
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Figure 5.4: Illustration of the synthesis process to generate artifactual EEG
data with seizure segment.

sampled at 256 Hz with 16-bit resolution. Apart from that, we have also

performed some simple experiments to record 32-channel EEG data with

a healthy subject by using the commercial Mitsar-EEG-202 recorder as

shown in Figure 5.3. The subject is asked to perform specific task in order

to record and characterize some common artifacts, e.g. chewing, swallow-

ing, head movement, body movement, eye blinking, eye movement, etc.

The timing of those tasks are noted down and later confirmed with the
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Figure 5.5: Process flow for validation of seizure detection.

corresponding recorded signals.

5.4.2 Data Synthesis

5.4.2.1 Semi-Simulated

We have synthesized an artifact-free EEG sequence of 5 min long from real

EEG collected from CHB-MIT database as ground truth and different types

of simulated artifact waveforms to test our artifact removal algorithm. The

process of data synthesis is shown in Figure 5.4.

5.4.2.2 Fully-Simulated

In this dataset, we have simulated all three data components: artifacts,

seizure event and EEG background activity (i.e. EEG rhythm), and then

combined them together to make artifactual EEG dataset with seizure

events. The simulated EEG data have been generated according to the

classical theory of Event Related Potentials (ERP) as described in [156].

The MATLAB code we used to generate such simulated EEG is available

to download for free from [154].
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5.5 Performance Evaluation

A fair performance evaluation of any artifact removal algorithm has often

been an issue because of few reasons; e.g. lack of ground truth data, in-

suffcicient amount of data used, casual choice of performance metrics and

so on. Therefore, it is often seen that only qualitative evaluation is avail-

able in time domain plot and/or in spectral domain in terms of PSD plot

[16, 27, 157, 144]. In order to have a fair and complete evaluation, enough

quantitative results are required along with the traditional qualtitative ap-

proach. In addition, further analysis of later stage signal processing is

required to observe the aftereffect of artifact removal. Hence this section

deals on the way of performance evaluation for both artifact removal and

seizure detection accuracy by quantitatively as well as in qualitative man-

ner.

To define the quantitative metrics used for artifact removal and seizure

detection, we define xref(n), xart(n) and xrec(n) as the discrete time signals

of length L representing clean reference signal (artifact-free), artifactual

and reconstructed signal respectively. Then, the error signal before and

after artifact removal can be defined respectively as

ebr(n) = xart(n)− xref(n), (5.6)

ear(n) = xrec(n)− xref(n). (5.7)

In the sequel, we introduce the metrics used for artifact removal and seizure
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detection in more detail.

5.5.1 Metrics for Artifact Removal

The performance of the proposed algorithm on the artifact removal has

been evaluated both in terms of the amount of artifact reduction and the

amount of distortion it brings into the signal of interest, specially to the

seizure events. Several efficiency metrics have been calculated in both time

and spectral domain to quantify such evaluation. In order to have fair

evaluation and clear idea we also have considered the amount and duration

of artifacts present in the signals. Some of the metrics (such as λ, ∆SNR,

RMSE, Pdis, SNRart, ∆Tart) have already been defined in Chapter-4 under

sub-section 4.5.2. Thus rest of the metrics are described here as follows:

1. ∆Cor: Correlation is the measure of similarity between two time

series in time domain. In order to calculate the improvement in cor-

relation ∆Cor due to artifact removal, the following equation is used

∆Cor(%) =
crec − cart

cart
× 100 (5.8)

where cart and crec are the cross-correlation coefficients between ref-

erence signal with artifactual and reconstructed signal respectively.

2. ∆Coh: Coherence is the measure of similarity between two time series

in frequency domain and it is defined between two signals x(t) and

y(t) as:

∆Coh =
|Gxy|2

GxxGyy

, (5.9)
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where |Gxy| is the cross-spectral density between x(t) and y(t); Gxx

and Gyy are the auto-spectral density of x(t) and y(t) respectively.

Now, we assume Cohbef be the coherence between reference and ar-

tifactual signal while Cohaft be the coherence between reference and

reconstructed signal, then the average improvement in coherence due

to artifact removal denoted by ∆Coh is calculated by following equa-

tion:

∆Coh(%) =
Cohaft − Cohbef

Cohbef

× 100 (5.10)

3. SNDR: Signal to noise and distortion ratio in frequency domain is

calculated as follows:

SNDR = 10 log10

(
Psig + Pdis

Pdis

)
. (5.11)

where Psig =
∑

(Pref(f))2.

5.5.2 Metrics for Seizure Detection

Seizure detection/classification still is an active research problem in the

epilepsy research community. There are several seizure detection methods

available in the literature and none of them can claim to be robust for every

patient and in every recording/surrounding environment as most of them

are evaluated based on small quantity of dataset and do not consider the

effects of all types of artifacts. However, since the purpose of this study is

not to develop a seizure detection algorithm but to verify the performance

of seizure analysis after the proposed artifact removal algorithm is applied,
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therefore in this section we will show some examples of simple seizure anal-

ysis or measurement available in the literature to prove the efficacy of the

artifact removal algorithm.

5.5.2.1 Feature Extraction

Feature extraction is an important stage for classification in machine learn-

ing on which both classification performance and classifier complexity greatly

depends. There are many ways of extracting EEG features for seizure clas-

sification that are mentioned in the literature [158, 159, 160, 161]. Most

of them use the statistical features (e.g. entropy [162, 163], kurtosis, skew-

ness, line length [158], variance, min, max, maxima count, etc.) either

from directly time domain, or from both time and frequency domain or

even some combined spatial (channel-wise) domain based features along

with time and frequency. Some recent literatures also use wavelet domain

based features to extract the desired frequency sub-bands [160, 161]. In this

thesis, we use a single-dimension feature so called Sample Entropy which

is described below.

• Sample Entropy: Sample entropy or SampEn which was introduced

by [162], quantifies the complexity of a time series data and recently

it has become an attractive measure in analyzing non-linear physi-

ological signals [163]. Unlike other entropy or complexity measures

(e.g. approximate entropy or ApEn), the advantage of SampEn is

that it is resistant to the short-duration transient interferences like
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spikes. It is the negative natural logarithm of an estimate of the con-

ditional probability that if two sets of simultaneous data points of

length m match point wise within a tolerance r then two sets of si-

multaneous data points of length m+ 1 also match point-wise within

the tolerance r and represented as SampEn(m, r,N) where m, r and

N are the embedding dimension, tolerance and number of data points

respectively [162].

We assume a time-series data epoch of length N = x1, x2, x3, ..., xN ; a

template vector of lengthm, such thatXm(i) = xi, xi+1, xi+2, ..., xi+m−1

and the distance function d[xm(i), xm(j)] for i 6= j. Now the number

of vector pairs in template vectors of length m and m + 1 having

d[xm(i), xm(j)] < r are denoted by B and A respectively. Thus the

sample entropy is defined as

SampEn = − loge(
A

B
) (5.12)

where, A = no of template vector pairs having d[xm(i), xm(j)] < r of

length m+ 1

and B = no of template vector pairs having d[xm(i), xm(j)] < r of

length m
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Figure 5.6: The removal result after the proposed algorithm is applied on
our recorded EEG.

5.5.2.2 SVM Classification

Support vector machine is a supervised learning based classifier which is

widely used in simple binary linear classification [164]. In our problem of

classifying seizure epoch from non-seizure epoch, we have used a simple

SVM classifier whose input is the extracted SampEn feature. Initially the

classifier is trained with the SampEn values calculated from each epoch as

training samples. The benchmark epochs are obtained from reference signal

where both artifact free seizure and artifact-free non-seizure epochs have

known label. Then the classifier is tested with SampEn values calculated

from artifactual signal epochs. Finally the same designed classifier is again

tested with the SampEn values calculated from reconstructed signal epochs.
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Figure 5.7: The removal result after the proposed algorithm is applied on an
artifact-free seizure segment labeled and collected from MIT-CHB dataset.
The reconstruction is almost perfect when there is no visible artifact.

In both cases, the no. of true positives and false positives are recorded. The

process flow of seizure detection after artifact removal is shown in Figure

5.5.

• ∆F(%): If Fbef and Faft denote the number of false positives for

seizure classification before and after artifact removal respectively,

then the improvement in number of false positives, i.e. ∆F(%) is

given by

∆F(%) =
Fbef − Faft

Fbef

× 100 (5.13)
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5.6 Results and Discussion

5.6.1 Qualitative Evaluation

5.6.1.1 Real Data

The proposed algorithm is applied to our recorded EEG data from a healthy

subject with labeled chewing and eye-blink artifacts. The artifact removal

result in terms of time-domain plot is shown in Figure 5.6 for qualitative

evaluation which suggests a satisfactory removal of both types of artifacts

without distorting the background EEG signals in the non-artifactual re-

gion.

Another example of artifact removal result is illustrated in Figure 5.7

where there is an artifact-free seizure segment is present. It is obvious from

the time-course data that almost perfect reconstruction of seizure activities

occurs.

5.6.1.2 Semi Simulated

An example of artifact removal algorithm applied on semi-simulated data

is presented in Figure 5.10. The artifactual data sequence is made up

with real seizure and real background EEG data where simulated artifacts

are superimposed. It’s obvious that the algorithm can’t remove all of the

artifacts all the time, but can reduce them significantly most of the time

and more importantly can still preserve the desired seizure activities pretty
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Figure 5.8: Artifact removal result applied to fully-simulated dataset-1.
The plot is a time course data where all six types of artifacts are present.
Note that, not all of the artifacts are removed or attenuated. The reason is
that in order to preserve the seizure events, the amount of artifact reduction
has been compromised.

well. This qualitative illustration in time domain data shows a better

visualization to detect seizure offline after significant reduction of most of

the artifacts as usually done by the clinicians.

5.6.1.3 Fully Simulated

The artifact removal result from a fully simulated data is illustrated in Fig-

ure 5.8 where all three signal components are simulated. The synthesized

artifactual data is severely contaminated with different types of artifacts

and thus makes it difficult to detect the segment of seizure activities prop-
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Figure 5.9: Six types of different simulated artifacts that mimicking real
artifacts found in the typical scalp EEG recording environments. The ap-
plication of proposed artifact removal algorithm can almost successfully
remove such artifacts most of the time without distorting the background
EEG signals. The black, red and blue traces denoting reference, artifactual
and reconstructed simulated EEG data respectively.

erly. Once most of the artifacts are reduced, it’s now easy to detect seizure

segment which also increases the true positive detection.

Another example of all six types of simulated artifacts and their reduc-

tion is shown in Figure 5.9. Here each plot shows each type of artifact

contaminated segment before and after artifacts are removed along with

the reference artifact-free segment. This qualitative illustration proves that

most of the time when there is no seizure, the algorithm can significantly

reduce each type of artifacts.

5.6.2 Quantitative Evaluation

This sub section quantifies the results obtained both in terms of artifact re-

moval and the consequence of artifact removal, i.e. improvement in seizure
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Figure 5.10: The removal result after the proposed algorithm is applied on
the semi-simulated EEG data.

detection.

5.6.2.1 Artifact Removal Results

As discussed in sub-section-5.5.1, we have calculated several time and fre-

quency domain metrics to quantify both amount of artifacts removed as

well as amount of distortion made with respect to both amount and in-

tensity of artifacts present in the data. Figure 5.11 shows the calculated

SNDR over the entire frequency bandwidth of EEG data for fully simulated

data sequence as in Figure 5.8 before and after artifacts are removed. It is

clearly seen that a significant improvement of SNDR on an average of 5-10

dB over the entire frequency is made due to artifact removal which proves

the efficacy of the proposed algorithm. Table 5.4 presents the quantitative
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Figure 5.11: SNDR for signals before and after artifact removal clearly
shows the improvement in signal quality over the entire frequency band.

metrics of artifact removal with respect to the strength of artifacts, i.e.

different artifact SNR SNRart. Table 5.5 presents the quantitative metrics

of artifact removal with respect to different artifact duration ∆Tart.

5.6.2.2 Comparison with Other Methods

We have compared the performance our proposed method with few state-

of-the-art artifact removal methods (i.e. wavelet-BSS and EMD-BSS based

methods) in terms of both quantitative removal metrics (Figure 5.12) and

computational time (Figure 5.13) to roughly illustrate the superior efficacy

of our method in comparison with others. As we can see that the amount

of artifact removal, i.e. λ is around 40% which means more than half of the

artifacts have not been removed in order to protect the unwanted removal

of seizure events. Even with such limitation, the increment in signal quality
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Figure 5.12: Comparison of proposed method with respect to few available
artifact removal methods in terms of the quantitative metrics.

is significant. The comparison of computational time to process roughly 1s

of data for the proposed method is about 1.8 ms which is lowest among all

others. However, in order to achieve online processing, further reduction of

computational time is necessary by optimizing the algorithm. The process

flows of wavelet-BSS and EMD-BSS based methods are shown in Figure

3.6.5

5.6.2.3 Seizure Detection Results

In order to show that artifact removal by this proposed algorithm not only

makes offline analysis during seizure detection easier and more accurate,

but also helps the available automated seizure detector (ASD) to improve

their performance significantly. An example of false alarms due to arti-

5Note that the epoch-by-epoch processing is only applied for our proposed method
and for others we just process the whole sequence at once as it’s difficult for BSS-based
methods to function properly to separate components with small duration of data (i.e.
epoch).
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Figure 5.13: Comparison of proposed method with respect to few available
artifact removal methods in terms of the computational time required to
process each 1 second of data in MATLAB simulation.

facts is presented in Figure 5.14. Here we present three sequences of fully

simulated EEG data: reference, artifactual, reconstructed and their corre-

sponding SamEn values calculated with 2-sec time window. For an ideal

case, i.e. without artifact, seizure and non-seizure segments can be easily

separated by comparing their average sample entropy. However, in practice,

EEG sequence is always contaminated with different artifacts and hence it

may introduce some false alarms due to artifacts. Once most of the arti-

facts are reduced, the no. of false alarms is also reduced significantly as

illustrated clearly in the Figure 5.14.

A quantitative representation of amount of improvement in seizure de-

tection is illustrated in Figure 5.15 where the no. of false positives are

plotted for both before and after artifact removal. In addition the corre-

sponding improvement in ∆F(%) which suggests that on average 20-80%
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Figure 5.14: An example of false alarms due to artifacts is illustrated where
sample entropy is chosen as a feature to separate seizure from non-seizure
(normal) events. Artifact removal can significantly reduce the false alarms
by reducing the amount of artifacts.
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on bottom) are plotted with respect to different data sequence/channel
no. For seizure detection purpose, SampEn is used as feature and SVM as
classifier.
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ROC Curve for Seizure Detection in Scalp EEG to Illustrate the Effect of 
Artifact Removal on the Seizure Detection Performance Figure 5.16: ROC curve for seizure detection in scalp EEG to illustrate the

effect of artifact removal on the seizure detection performance.
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Figure 5.17: Different features from EEG data for seizure and non-seizure
events calculated for each data segment of time window 1 sec.
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improvement is possible after artifacts are reduced by proposed algorithm.

Please note that, for this quantification we have simulated 100 different

data sequences each of 200-sec duration where 100-sec is seizure and rest

100-sec is non-seizure segment. Then for each epoch of 2-sec, SampEn is

calculated and used as a feature for SVM classification to quantify the no.

of FP . The no. of TP in this simulation remains always 100% due to the

single feature selection. However, these values are not absolute and may

differ depending on the type and size of features, type of classifier used,

length of the seizure segment, epoch duration and so on. The results are

given only for simple understanding of the fact that artifacts removal with

proposed algorithm can significantly improve the performance of seizure

detection. Figure 5.16 shows the receiver operating characteristics (ROC)

curve for seizure detection before and after artifact removal.

Figure 5.17 shows some common statistical features used in literature

for differentiating seizure epochs from non-seizure ones for both before and

after artifact removal. It is obvious from the plots that after artifact re-

moval, the features are easier to distinguish than before artifact removal.

Hence the proposed algorithm can also be useful in improving seizure detec-

tor performance in other seizure detection algorithms where combination

of different statistical features are used for classification.
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5.7 Optimum Parameter Selection

Similar attempts to sub-section 4.7 of Chapter-4 have been followed to

select the best mother wavelet and threshold parameters automatically for

performance. The filter parameter α and threshold parameters kA and kD

have been swept across wide range of values to find the optimal ones where

both the amount of artifact removal and signal distortion is achieved as

best. The process flow for algorithm optimization is shown in 5.18.

The performance metrics (quantitative) are plotted against the param-

eters α, kA and kD in Figure 5.19, 5.20 and 5.21 respectively to be able to

select the best/optimal values of parameters correspond to the best perfor-

mances.

Another Figure 5.22 shows the average SNDR improvement after arti-

fact removal w.r.t the threshold parameters and obvious from the graph to

be able to choose the optimal values of kA and kD.

5.8 Conclusions

The purpose of this research was to develop an artifact removal method in

order to make the seizure analysis process easier for the clinicians and also

to improve the performance of the available automated seizure detection

algorithm. In addition, such artifact removal which preserves the seizure

events, can greatly reduce the labor and complexity of seizure detection
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Figure 5.19: An illustration of selecting the best mother wavelet by opti-
mizing the parameter alpha with the help of performance metrics vs. alpha
plot.

by making it easy to analyze underlying signal of interest. To ensure a

fair performance evaluation of the proposed method, we performed exten-

sive simulations on both real and synthesized data with several metrics to

quantify results. Also an analysis of a simple seizure detection proves the

efficacy of the method that seizure detection accuracy can be significantly

improved. The results are impressive and further improvement of the cur-

rent algorithm to be able to remove artifacts in real-time will surely be a

breakthrough in epilepsy patients monitoring. It is, therefore, expected to

have more analysis on this particular research to enhance the quality of

epilepsy patients by ensuring proper seizure diagnosis and treatment.
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Figure 5.20: An illustration of selecting the best threshold parameter kA
by the help of performance metrics vs. kA plot.
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Figure 5.22: An illustration of selecting the best threshold parameter kA
and kD by the help of performance metric (Avg. SNDR Improvement) vs.
kA or kD plot.

Table 5.4: Quantitative metrics of artifact removal results for different
artifact SNR (SNRArt).

SNRArt (dB) Performance Metrics
λ ∆SNR ∆RMSE (%) ∆PSDdis (%) ∆Corr (%) ∆Coher (%)

5 62.3 8.5 62.2 90.5 63.8 25.5
10 48.5 9.6 67.1 98.8 110.5 53.8

Table 5.5: Quantitative metrics of artifact removal results for different
artifact durations (∆TArt). The mean values are highlited with bold face
in the final row.

∆TArt (%) Performance Metrics
λ ∆SNR ∆RMSE (%) ∆PSDdis (%) ∆Corr (%) ∆Coher (%)

20 44.3 7.8 75.9 98.8 84.5 46.7
25 57.0 8.6 66.5 97.8 75.5 29.8
30 66.2 9.1 51.7 86.3 67.9 30.2
35 57.8 10.8 49.9 99.9 139.7 45.9
40 68.8 11.1 61.1 99.6 113.5 30.7

30.87% 54.71% 8.27% 63.92% 97.55% 98.91% 43.05%
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Chapter 6

Artifact Reduction for

EEG-based BCI Application:

Algorithm Design

This chapter discusses about artifact detection and removal for different

BCI applications and proposes a unique idea of mapping the probability

of artifact contamination in each epoch of a data sequence for BCI appli-

cations. Finally, an algorithm is proposed to remove artifacts based on

the probability mapping with a tuning parameter controlled by the user in

removing specific type of artifacts in specific BCI application.
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6.1 Introduction

Brain-Computer Interface (BCI) is a promising technique that establishes

a direct link between human brain and an external computerized device by-

passing the normal pathway that is not functional due to any brain/spinal

related injury [42]. This technology thus allows severely disabled persons

suffering from brain or spinal cord injury to communicate with outside

world by controlling certain computerized device, e.g. computer, wheel

chair, neural prosthetics, etc. It is also used as a rehabilitation tool for

stroke patients and people with spinal cord injury. Apart from clinical

needs, it has recently been popular in some other applications as well,

such as virtual augmentation, cognitive study, human-computer interac-

tion (HCI), etc. Although, there are different brain recording techniques

(starting from non-invasive to invasive ones) to measure the electrical ac-

tivity of brain to process and use in BCI applications, scalp EEG is the

most popular among them in BCI research due to its mainly non-invasive

nature with other attractive features such as fine temporal resolution, sim-

ple to use, portability and lower cost [43]. However, scalp EEG is very

much prone to undesirable artifacts that come from non-cerebral origin.

The artifacts often severely contaminate the EEG recordings and modify

the shape of a particular neurological event that drives the BCI system

affecting the accuracy of the BCI performance. For example, artifacts can

mistakenly cause an unintentional control of the BCI device [108].
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Therefore, handling of such offending artifacts is critical in BCI research

for satisfactory performance and consequently many ways have been de-

veloped to get rid off artifacts that create misinterpretation in the signal

analysis. The first step of handling artifacts is to avoid them by instructing

the BCI user not to make unnecessary blink or body movement. Although

this is the easiest way to avoid the occurrence of only few types of artifacts,

there are always some involuntary and uncontrolled movements associate

with the user that can never be avoided, such as eye blink, ECG, etc. An-

other way of getting rid off artifacts is to reject the epochs that are highly

contaminated with artifacts. However, this doesn’t mean that the other

epochs are completely free of artifacts. Often such rejection involves man-

ual interpretation of the EEG data by clinical experts and thus requires

intensive human labor. Sometime automated rejection is also carried out

but often not accurate as the manual one. Rejection of epochs sometimes

don’t work when it requires the real-world applications that involve online

signal processing [165]. Recent advances in signal processing techniques

has now allowed the researchers to design automatic artifact identification

and removal algorithms to be able to implement online for real-world BCI

applications.

There have been several methods proposed in the literature to detect

and remove artifacts particularly for BCI applications. One of the most

common is the use of Blind Source Separation based algorithm (e.g. ICA

[15, 18, 19, 84, 92, 166, 167, 168]) which separates multi-channel EEG
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recordings into independent or maximally uncorrelated sources and then

rejecting the artifact source before reconstructing the signals. However,

ICA is an offline technique and often requires manual intervention to iden-

tify the artifactual source (ICs). Moreover, it cannot operate on few or

single-channel datasets thus not suitable for portable ambulatory BCI ap-

plications. Another popular method to remove physiological artifacts is

linear regression (e.g. using adaptive filter [19, 59]) with the availabil-

ity of a dedicated reference artifact channel such as EOG or ECG. In

many BCI applications, such reference channel may not be available thus

not possible to use regression technique. In recent times, two methods

namely wavelet transform [34, 35, 40, 51] and empirical mode decomposi-

tion (EMD) [27, 33, 34], that are suitable for nonlinear and nonstationary

biomedical signal processing, have been introduced to detect and remove

artifacts from EEG. Among these two, wavelet based techniques combin-

ing with another technique such as ICA/CCA [35, 38] or neural network

[59] have been very popular and stated to have decent performance in arti-

fact removal. On the other hand, EMD is more computationally expensive

and still an empirical method that doesn’t have complete theoretical back-

ground.

In this chapter, we propose a unique artifact detection method based

on artifact probability mapping which quantifies an epoch by a relative

probability of being artifactual. This is achieved by considering the typ-

ical artifact characteristics in contrast to the background EEG rhythms
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with the help of four statistical measures namely entropy (measures the

uncertainty), kurtosis (measures the peakedness), skewness (measures the

symmetry) and Periodic Waveform Index, PWI (measures of periodicity)

as described in detail in the later section of this chapter. This unique prob-

ability mapping will allow the user to decide whether to correct the epoch

or to remain as it is by choosing an appropriate probability threshold. Sub-

sequently a removal method is also proposed which is based on stationary

wavelet transform based denoising and relies on the desired spectral band

of EEG rhythms in contrast to spectral bands of different artifacts partic-

ularly for BCI applications. The proposed method is demonstrated with

both real and synthesized database and extensive quantitative measures

show the efficacy of this method with obtained satisfactory results. More-

over, the proposed method is also compared with some of state-of-the-art

methods and proves its superiority over others both in terms of perfor-

mance and computational time. Finally, the effect of artifact removal on

real BCI database has also been demonstrated to show that it can substan-

tially improve the classifier accuracy in BCI experiments.

The rest of this chapter is organized as follows. Section 6.2 introduces

the proposed artifact probability mapping followed by proposed removal

method. Section 6.3 briefly describes the data collection and data synthesis

process. Section 6.4 provides the metrics to evaluate the performance of

proposed artifact removal method. Section 6.5 presents and discusses the

results for both artifact removal and its effect on BCI performance. Finally,
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section 6.6 gives concluding remarks.

6.2 Proposed Method

The whole process flow of our proposed method starting from preprocessing

to probability mapping and finally artifact removal is shown in Figure 6.2.

6.2.1 Artifact Detection: Probability Mapping

The proposed artifact probability mapping is similar to the idea of spike

probability mapping described in [118] where the authors proposed a prob-

ability mapping for separation/identification of neural action potential or

spike from background noise for in-vivo neural recordings. Here we attempt

to separate artifacts from background EEG rhythms by representing each

epoch of 1-sec duration by the relative probability of artifact contamination.

Figure 6.1 shows the segmentation process of EEG sequence into epochs

and calculation of its corresponding artifact probability. This probability

of artifact contamination depends on four measures as

• Entropy of the epoch that represents the randomness of the samples

in an epoch

• Kurtosis of the epoch that represents the peakedness of the samples

in that epoch

• Skewness of the epoch representing the symmetry of distribution of

the samples in the epoch
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• Periodic waveform index (PWI) that represents the periodicity of the

samples in that epoch

The above mentioned four measures are described below:

1. Entropy, H: Entropy (H), a measure of uncertainty of information

content, of a discrete random variable x with possible values x1, ..., xn,

can be calculated as:

H(x) = E[− ln(P (x))]. (6.1)

Here E is the expected value operator and P (x) is the probability

mass function of x.

2. Kurtosis, Kr: Kurtosis is the measure of ”peakedness” of probabil-

ity distribution function and is calculated for a real-valued random

variable x as follows:

Kr[x] =
µ4

σ4
. (6.2)

where µ and σ are the mean and standard deviation of random vari-

able x.

3. Skewness, γ1: Skewness is a measure of the asymmetry of the proba-

bility distribution of a real-valued random variable, x about its mean

and calculated as
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γ1 =
µ3

σ3
. (6.3)

where µ and σ are the mean and standard deviation of random vari-

able x.

4. Periodic Waveform Index, PWI: Periodic Waveform Index is

the measure of the rhythmicity or periodicity pattern in a signal x

proposed by [169]. Suppose the total harmonic energy at time point

n is Eτ [n] and the signal energy corresponding to a cycle duration τ

is Nτ [n] then PWI is defined as

PWI[n] ,
Eτ̂ [n]

Nτ̂ [n]
. (6.4)

where

Nτ [n] ,
1

τ

∞∑
n′=−∞

(x[n′]ψ[n′ − n])2 (6.5)

and

Eτ [n] ,
∑
k>0

|1
τ

∞∑
n′=−∞

(x[n′]ψ[n′ − n])exp(−2iπ
kn′

τ
)|2 (6.6)

here ψ is a window of bounded energy centered around 0 of length

α/τ and τ̂ = arg.maxτEτ .

Probability of Artifact, Pr: Probability of an epoch being artifact-

contaminated depends on four above mentioned measures. By studying

the artifact characteristics, we know that artifact tends to be more random
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Figure 6.1: Segmenting EEG sequences into epochs and calculating corre-
sponding probability of being artifactual

(i.e. lower entropy values) with higher amplitude (i.e. higher kurtosis) than

background EEG, more likely to be transient (i.e. lower PWI) than rhyth-

mic (i.e. unlike EEG rhythms) and artifact makes the data distribution

to be asymmetrical e.g. longer tail on either side of data histogram (i.e.

higher skewness). Therefore, keeping in mind of these facts, we propose an

equation as follows to measure the probability of being artifactual for an

epoch

Pr =
[kH(1− Ĥ)] + [kKrK̂r] + [kγ1|γ̂1|] + [kPWI(1− ˆPWI)]

4
. (6.7)

where kH , kKr, kγ1 , and kPWI are the weights of the measures Ĥ, K̂r,

γ̂1, and ˆPWI respectively that are normalized by their corresponding max-

imum values.
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Figure 6.2: Proposed structure to create probability mapping and subse-
quently to remove artifacts from EEG

6.2.2 SWT-Based Artifact Removal

6.2.2.1 Preprocessing

To begin with, let xraw(n) denotes the sampled raw EEG signal which

is sampled at Fs Hz where n = {0, 1, 2, · · · } is the discrete-time index.

We assume that the power-line interference of 50/60 Hz and the offset

of raw EEG have already been removed prior to this preprocessing stage.

In the preprocessing, the incoming signal is firstly divided into into non-

overlapping epochs epochs with size of N . Then, the jth epoch (j ≥ 1) is
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Table 6.1: Illustration of SWT coefficients in relation to EEG rhythms,
artifacts and relevant BCI studies in their corresponding frequency bands.

given by

xj =



xraw(jN − 1)

xraw(jN − 2)

...

xraw(jN −N)


(6.8)

Note that the choice of epoch duration plays an important role in both

amount of artifact removal and amount of distortion made to the signal of

interest. In addition, in case of automated BCI classification algorithm to

work after our proposed artifact removal method is applied, the value of N

will determine the minimum time delay for BCI signal processing. In our

algorithm, we have found N as 1-sec to be optimum after trying different

values empirically.
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6.2.2.2 Wavelet Decomposition

Wavelet decomposition and subsequently removing unwanted artifacts by

applying threshold is a familiar denoising process in non-linear, non-stationary

biomedical signals [78]. Usually, the denoising process refers to removing

high frequency noise by thresholding the detail coefficients after wavelet

decomposition. However, in this thesis, by using the term denoising, we

refer to removing artifactual components from neural signals in the wavelet

domain, irrespective of whether it is high-frequency or low-frequency ar-

tifacts. The objective of this stage is to decompose and analyze the raw

epoch with a reasonable time-scale resolution in wavelet domain for pos-

sible identification of artifactual components in the later stage. To this

end, stationary wavelet transform is performed on the epochs {xj}j≥1 with

level-5 decomposition by Haar as basis wavelet which results in final ap-

proximate aj,5 and detail coefficients dj,1, dj,2, · · · , dj,5. Although there are

many types of wavelet transform (e.g. DWT, CWT, SWT, etc.), we chose

SWT for its advantage of being translational invariant [78]. The choice for

level of decomposition is mainly inspired from the bandwidth of EEG signal

(i.e. 0.05 - 128 Hz) and the frequency bands of EEG rhythms relevant to

BCI studies such as mu(7− 13Hz) and beta(14− 30Hz) for MI-based BCI

[170]; delta(< 4Hz) for ERP-based BCI; e.g. P300 [171]; and SSVEP (12-

18 Hz) [172] in order to have enough no. of frequency sub-bands to make

decisions on where to denoise carefully and where not. Table 6.1 shows the
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frequency sub-bands of the decomposed detail coefficients and the final-

stage approximate coefficient after 5-level SWT is performed on the raw

EEG data. It is clear that D3, D4 and A5 correspond EEG rhythms beta,

mu and delta respectively and hence during denoising process, we need to

be very careful to handle these coefficients. The other three coefficients,

i.e. D1, D2 and D5 can be denoised directly and fully without any further

consideration as most likely they contain artifacts and non-relevant EEG

rhythms in such BCI applications.

6.2.2.3 Denoising

We use non-negative garrote shrinkage function during denoising since it

has some appealing properties of being less sensitive to input change, having

lower bias and being continuous [124]. This is a nice trade-off between soft

and hard threshold function in terms of amount of artifact removal and

signal distortion [124] and is given by

g(j, `) =


di,j |dj,`| ≤ tj,`

t2j,`
dj,`

|dj,`| > tj,`.

(6.9)

where g(j, `) is the garrote threshold function at each decomposition level

of ` for epoch j, and tj,` denotes the threshold value. To denoise the critical

coefficients dj,3−dj, 4 for MI-BCI and dj,5, aj,5 for P300-based BCI, and dj,4

for SSVEP-based BCI, we have used modified universal threshold reported

by [7]

t′j,` = Kαj,`
√

2 lnN, (6.10)
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where in (6.10) N is the length of epoch and αj,` is the estimated noise

variance for wj,` which is usually calculated by following formula [38]

αj,` =
median(|wj,`|)

0.6745
. (6.11)

where wj,` is the wavelet coefficient at the `th decomposition level (i.e.

wj,` = aj,` for approximation coefficient and wj,` = Dj,` for detail coeffi-

cient.). The new parameter K in (6.11) comes from the empirical observa-

tions [7]. It is given as

K =


KA (0 < KA < 1) for thresholding aj,5

KD (0 < KD < 1) for thresholding dj,`

(6.12)

where, K = KA is selected for thresholding approximate coefficient aj,5 and

select K = KD to threshold all the detail coefficients (dj,`, ` = 1, 2, · · · , 5).

The tuning of parameter K is discussed at the end of this chapter under

section 6.7 as an example for particularly MI-based BCI studies.

6.2.2.4 Decision

The most important part of the algorithm is Decision. Depending upon

this stage, the decision of whether an epoch is to be denoised or not is

made from the probability threshold set by user. In addition, once the

decision of denoising is made, then how carefully that particular epoch to

be denoised to remove artifacts without affecting the signal of interest, is

also decided in this stage. Therefore the performance of artifact removal

and consequent improvement of BCI performance is highly dependent on

this stage.
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Table 6.2: Pseudo-code for the decision stage during denoising SWT
coefficients.

The first step of this stage is to find whether the epoch is truly artifac-

tual based on response from both probability mapping and from measuring

the modified universal threshold for each level of decomposed wavelet coef-

ficients: if both of them are affirmative, then the epoch is decided to denoise

fully. Otherwise we let the epoch as it is. The parameters are chosen as

we discuss in the previous part of Wavelet Decomposition. As we denoise

primarily based on the user’s set probability threshold, some epochs still

being found artifactual from both probability mapping and wavelet coef-

ficients, they remain untouched and therefore we pay the penalty of less

amount of artifact removal.
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6.2.2.5 Reconstruction

In the final stage of reconstruction, based on the decision stage, we either

apply thresholding (fully) or let the coefficients D3 - D4 remain same.

Finally with all the new set of coefficients obtained (i.e. D′1 - D′5 and

A′5), we apply inverse SWT to reconstruct the EEG epochs. Thus a new

sequence of data so called reconstructed data is obtained.

6.3 Methods/Data Collection

6.3.1 Data Collection

Real EEG recordings are downloaded from BCI competition-IV Scalp EEG

Database: dataset-1 from [43], dataset-2a and dataset-2b from [43, 173,

174]. The dataset-1 has 64 EEG channels (0.05-200 Hz) and sampled at

1000 Hz recorded from 7 subjects for MI-BCI study. Dataset-2a has 22 EEG

channels (0.5-100 Hz) with 3 EOG channels recorded from 9 subjects having

4 classes whereas dataset-2b has 3 bipolar EEG channels + 3 EOG channels

collected from 9 subjects having 2 classes for MI-based BCI experiment.

Both of them were sampled at 250 Hz.

Apart from that as mentioned in previous chapter under sub-section

5.3.1 Data Collection, we performed simple EEG experiments to record

some specific artifact types from healthy subject.
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Figure 6.3: Illustration of the synthesis process to generate artifactual
EEG data for quantitative evaluation of proposed artifact removal.

6.3.2 Data Synthesis

In this dataset, we have simulated two data components: artifacts and

EEG background activity (i.e. EEG rhythm), and then combined them

together to make artifactual EEG dataset. The simulated EEG data have

been generated according to the classical theory of Event Related Potentials

(ERP) as described in [156]. The MATLAB code we used to generate such

simulated EEG is available to download for free from [154]. The process if

data synthesis is shown in Figure 6.3.

6.4 Performance Evaluation

6.4.1 Artifact Removal Performance Metrics

As we mentioned in the previous chapter 5 that it is quite difficult to

compare different artifact removal methods based on their ability to remove
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artifacts since very few quantitative evaluation have been reported in the

literature. Most of the published articles evaluated their method in terms

of some qualitative plots. In addition, very few of them quantified the

distortion to desired EEG signals due to the removal effect. Therefore, it’s

not fair to tell which performs best based on the study.

The performance of the proposed algorithm on the artifact removal has

been evaluated both in terms of the amount of artifact reduction and the

amount of distortion it brings into the signal of interest. Several efficiency

metrics have been calculated in both time and spectral domain to quantify

such evaluation. In order to have fair evaluation and clear idea we also have

considered the amount and duration of artifacts present in the signals. We

have incorporated the similar performance metrics reported in chapter 5

for evaluating artifact removal outcome.

6.4.2 BCI Performance Metrics

ROC Curve: In order to evaluate the BCI performance accuracy for the

classifier in terms of ROC curve, the required two metrics i.e. true posi-

tive rate (TPR) and false positive rate (FPR) are calculated by following

equations:

TPR =
TP

TP + FN
, (6.13)

FPR =
FP

FP + TN
, (6.14)
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where TP , TN , FP and FN are the number of epochs detected as true

positive, true negative, false positive and false negative for a particular BCI

task respectively.

6.5 Results and Discussion

6.5.1 Qualitative Evaluation

6.5.1.1 Real Data

The proposed algorithm is applied to our recorded EEG data from a healthy

subject with labeled chewing and eye-blink artifacts. The artifact removal

result in terms of time-domain plot is shown in 6.4 for qualitative evaluation

which suggests a satisfactory removal of both types of artifacts without

distorting the background EEG signals in the non-artifactual region.

Another example of artifact removal result is illustrated in Figure 6.5

where real EEG data from BCI competition dataset-IV is contaminated

with ocular artifact. It is obvious from the time-course data that the arti-

facts are corrected without much distorting the signal of interest.

6.5.1.2 Simulated

The artifact removal result from a fully simulated data is illustrated in

Figure 6.6 where both signal components (artifacts and background EEG)

are simulated. The synthesized artifactual data is severely contaminated

with different types of artifacts and its corresponding probability mapping



199

A
m

p
lit

u
d

e,
 u

V

Figure 6.4: The removal result after the proposed algorithm is applied on
our recorded EEG.

is also shown. Once the artifact removal is performed, the probability of

being artifactual for previously contaminated epochs have been reduced

significantly as it is obvious from the lower part of the plot. Please note

that it’s not possible to remove all the artifacts completely (i.e. 100% λ),

but the purpose is to reduce artifact contamination as much as possible

without distorting the signal of interest.

Another example of all six types of simulated artifacts and their reduc-

tion is shown in Figure 6.7. Here each plot shows each type of artifact

contaminated segment before and after artifacts are removed along with

the reference artifact-free segment. This qualitative illustration proves that

most of the time the algorithm can significantly reduce each type of artifact.
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Figure 6.5: The removal result after the proposed algorithm is applied on
real BCI dataset collected from BCI Competition-IV.
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Figure 6.6: Fully simulated EEG data sequence with different types of arti-
facts before and after artifact removal (upper plot) and their corresponding
probability map (lower plot). The time window duration in this case is cho-
sen as 1 sec

6.5.2 Quantitative Evaluation

This sub section quantifies the results obtained both in terms of artifact

removal and the consequence of artifact removal, i.e. improvement in BCI

classification.
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Figure 6.7: Six types of different simulated artifacts that mimicking real
artifacts found in the typical scalp EEG recording environments. The ap-
plication of proposed artifact removal algorithm can almost successfully
remove such artifacts most of the time without distorting the background
EEG signals. The black, red and blue traces denoting reference, artifactual
and reconstructed simulated EEG data respectively.

6.5.2.1 Artifact Removal

As discussed in Section 6.4, we have calculated several time and frequency

domain metrics to quantify both amount of artifacts removed as well as

amount of distortion made with respect to both amount and intensity of

artifacts present in the data. Figure 6.9 shows the calculated SNDR over

the entire frequency bandwidth of EEG data for fully simulated data se-

quence as in Figure 6.6 before and after artifacts are removed. It is clearly

seen that a significant improvement of SNDR on an average of 5-10 dB

over the entire frequency is made due to artifact removal which proves the

efficacy of the proposed algorithm. Figure 6.8 shows the amount of artifact

removal for those epochs that exceed the probability threshold set manually
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Figure 6.8: Selected epochs with probability more than threshold for arti-
fact correction and their corresponding amount of artifact removal in %.

as 1.5 ∗ RMS(Pr) (i.e. 0.645 and the corresponding artifact probability

which shows that the average artifact removal is 43.53% and thus it’s a

reasonable removal performance.

Table 5.4 presents the quantitative metrics of artifact removal with

respect to the strength of artifacts, i.e. different artifact SNR SNRArt and

different artifact duration ∆TArt. The upper part (i.e. row) of the table

represents the quantitative values without considering the set probability

threshold while the lower row represents after considering the probability

mapping and its probability threshold.

6.5.2.2 Comparison with Other Methods

We have compared the performance our proposed method with few state-

of-the-art artifact removal methods (i.e. wavelet-BSS and EMD-BSS based

methods) in terms of both quantitative removal metrics (Figure 6.10) and

computational time (Figure 6.11) to roughly illustrate a comparison the

efficacy of our method compared with others. The process flow of wavelet-
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Figure 6.9: SNDR improvement in frequency domain for signals before and
after artifact removal.

BSS and EMD-BSS based methods is shown in Figure 3.6 from chapter

3.

One of the very few limitations of the proposed method is that its

low λ which suggests that it cannot remove all the artifacts at all time.

However, still it achieves better performance compared to others not only in

amount of artifact removal but also in signal quality improvement. Another

limitation of the proposed method in its current form is that the algorithm

can only process offline. But for real BCI application, it requires online data

processing, which can be achieved through automated threshold parameter

selection during decision making for denoising from artifact probability map

achieved in the first stage of the proposed method.



204

0 .0 0

2 0 .0 0

4 0 .0 0

6 0 .0 0

8 0 .0 0

1 0 0 .0 0

1 2 0 .0 0

L a m d a  D e l_ S N R D e l_ R M S E D e l_ P S D _ d is D e l_ C o r r D e l_ C o h e r

P ropo se d

w ICA

w CCA

EM D

EM D -IC A

EM D -C CA

Figure 6.10: Comparison of proposed method with respect to few available
artifact removal methods in terms of the quantitative metrics.

6.5.2.3 BCI Performance

During BCI experiments or applications, artifacts can modify or alter the

shape of a neurological event (e.g. ERP) that drives the BCI system.

Moreover, they can also mistakenly result in an unintentional control of

the device and hence consequence in a false positive [108]. Therefore, there

is a strong urge to avoid the artifacts if possible, otherwise they must be

identified in order to reject or remove them from the neural signals to be

analyzed or processed for the use of BCI system/device. In a self-paced BCI

system, artifacts can negatively influence the performance of the system in

following two ways:

• by altering the shape of the neural event during an intentional control

(IC) period, resulting in the reduction of True Positives

• by imitating the shape/properties of the neural event during a non-
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Figure 6.12: ROC curve plotted for signals before and after artifact removal
from the BCI output using LDA Classifier and Windowed Means as features
from BCILAB tool.

intentional control (NC) periods, resulting in the increase of False

Positives.

We have used BCILAB [175] which is a open source toolbox compatible

with EEGLAB [176] for BCI performance evaluation. The BCI-IV com-
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Figure 6.13: Error Rate for signals before and after artifact removal from
the BCI output using LDA Classifier and Windowed Means as features
from BCILAB tool.

Table 6.3: Quantitative metrics of artifact removal results for correspond-
ing artifact SNR (SNRArt) and artifact duration ratio (TArt(%)) for two
different cases: one is without considering probability mapping and the
other is after considering probability mapping.

petition dataset (motor-imagery experimental BCI) was used to observe

the classification results for both before and after artifact removal signals.

Windowed means features with LDA classifier is used for such evaluation.

The test results (by the model after training the classifier with some se-

lective epochs) from whole data is shown in terms of both ROC curve in

Figure 6.12 and error rate in Figure 6.13 suggest that BCI classifier out-

puts get better after artifact removal is applied and hence it can be used

to improve the BCI experience for the users.
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6.6 Conclusions

The presented probability mapping of artifact for each EEG epoch will

allow the user to choose whether to denoise any epoch or not and hence

providing the flexibility in artifact handling for different BCI applications.

Also the use of wavelet transform in artifact removal provides the use of

single-channel BCI applications that has recently been popular [177, 178,

179] and also eliminate the requirement of a reference artifact channel. The

scope of employing the proposed artifact removal for both ERP-based and

MI-based BCI application is another advantage of this presented work. The

quantitative results proof that it can not only remove artifacts satisfactory

but also improves the BCI performance significantly. Although the cur-

rent method has been tested for offline analysis, but since it is consistent

with the typical epoch-by-epoch handling of BCI processing, we expect this

method to be able to implement online after necessary modification.

6.7 Tuning of Parameter K for MI-BCI

Application

The tuning of parameter kA depends on the data distribution of A5 epoch

which contains both the δ wave, ocular artifacts and some low-frequency

artifacts (mostly large amplitude slow movement artifacts). This coefficient

is usually irrelevant for MI-based BCI applications, so when the histogram
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of the data has large deviation from its standard deviation (large tail on

the histogram on either one side or both), it is more likely due to presence

of such artifacts. Therefore a value less than 1 is chosen for kA and if

there is no such unusual tail present, then kA = 1 is chosen that makes the

threshold exactly same as the original universal threshold, i.e. T ′i = T1.

The criterion for the choice of kA is given below

kA =


0 ≤ kA < 1 if max(|A5|) > m× sd(A5),

1 otherwise,

(6.15)

where sd denotes the standard deviation of A5. The value of m is based

on the parameter tuning and can be obtained from some initial several

seconds of incoming raw EEG data samples to update the threshold value.

From the empirical studies, the value of m is found as minimum of 2, i.e.

2 < m <∞ (See Chapter-4 under sub-section 4.7.2).

In order to calculate the value of kD, Decision stage helps. Since D1

contains higher frequency activities (see Table 6.1), while D2 and D5 con-

tain gamma and theta frequency bands respectively but they don’t affect

much on the MI-based BCI study; therefore value of kD for first detail co-

efficient D1 is selected as 0.5 − 0.75, while for D2 and D5 it is selected as

0.75 − 0.9. For rest of the detail coefficients, (i.e. D3 - D4) the value is

chosen as 1 i.e. same as universal threshold.
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kD =



0.5 < ki ≤ 0.75 i = 1

0.75 i = 2, 5

1 i = 3, 4

(6.16)
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Chapter 7

Conclusion and Future Work

This chapter summarizes the overall contribution of this thesis and high-

lights their significances in neural information processing system. In addi-

tion we also present the future prospect of this work.

7.1 Contributions

This study explored one of the major problems in neural signal prepro-

cessing: artifact detection and removal. Two contributions were made by

studying and characterizing the artifact for in-vivo neural data for the

first time along with an intensive literature review of existing EEG artifact

removal methods/algorithms with detailed comparative analysis from sev-

eral points of view. A synthesized database with several artifact templates

has been generated and made available online for quantitative performance

evaluation of any artifact removal method. Then three separate artifact

removal algorithms are proposed for three different application purposes:
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in-vivo neural signal analysis and processing, epilepsy seizure detection and

BCI studies. All three algorithms have been evaluated with several quan-

titative metrics and compared with some of the available state-of-the-art

methods. The results suggest that in every case, the proposed algorithms

outperform their respective competing algorithms with an obvious margin

most of the times. In addition, the after-effect of artifact removal from

neural signals on the later-stage signal analysis is also measured quanti-

tatively and found to achieve substantial improvement in all three cases.

Thus this work is expected to be useful for neural signal processing and

analysis community in the long run and will provide platform to further

improve the understanding of our brain for different applications, both in

clinical and non-clinical applications.

7.2 Future Works

The work presented in this thesis can be further continued and improved

in future in different ways. Here, we suggest some of the possible directions

and potential approaches for future works which could be useful for further

improvements.
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7.2.1 Improvements on Current Work

7.2.1.1 Artifact Removal from In-Vivo Neural Signals

Artifact removal algorithm for in-vivo neural recordings requires further im-

provement to be able to implement on hardware for real-time applications

e.g. spike detection and sorting on the fly. The rooms for improvement are

discussed below:

• Automatic Parameter Adaptation: The algorithm should be able to

adapt its parameters automatically and that may require having some

training data. Once the training of the system is completed, the

algorithm should tune the parameters according to incoming input

signals and to different recording conditions.

• Complexity Reduction and Optimization of Algorithm: The complex-

ity of the algorithm should be further reduced in order to be able

to perform online signal processing. After extensive validation with

more real neural recordings, some parameters can be hard-coded like

a look-up table if possible and necessary.

• Hardware Implementation: The algorithm must be optimized further

for hardware efficient design during implementing in an ASIC. Due

to the invasive nature of the recording, the recorder must be worn

by the subject which demand on-chip signal processing in real time.

Therefore the digital signal processing algorithm here is not feasible
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to be implemented in FPGA or DSP chip, it must be implemented in

an ASIC. This would require several stages of algorithm optimization

before hardware implementation. Once ASIC is done, measurement

results followed by animal experiments need to be performed in near

future.

7.2.1.2 Artifact Removal from EEG

The other two artifact removal algorithms for scalp EEG also has room for

further improvement for real-life applications.

• Online Processing: For obvious reasons during seizure detection or

BCI applications in real-life, the signal must be processed in real-

time which also demand the artifact removal algorithm to be online.

However, if the number of channels of EEG recorder increases, the

complexity of the algorithm also increases linearly. Therefore, further

attempt to reduce the algorithm complexity in terms of wavelet filter

implementation must be considered seriously.

• Validation with Patient/User Data: In order to tune the threshold

parameters properly during seizure detection applications, experi-

ments should be performed to get more real long-term EEG data

from several patients so that decision can be made whether the al-

gorithm is patient-specific or can be termed general. Our group is in

collaboration with few epilepsy experts (i.e. clinicians) and we expect

to get some patient data from them. We expect to validate our algo-
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rithm and further tune its parameters by applying on those datasets.

The same applies to BCI experiments also that we require record-

ing more EEG from different BCI paradigms from different users to

validate our proposed algorithm-3.

• Further Optimization and Tuning: Both the algorithms for EEG ar-

tifact removal require further optimization for best performance and

automatic tuning of parameters for online processing. A stage of

automatic parameter tuning can be included in the algorithm archi-

tecture according to application’s requirement. Although the added

stage would increase computational cost but it will be worth if the

algorithm is to be used by a non-expert or for general purpose appli-

cations.

7.2.2 Other Possible Applications of Current Work

In addition to the improvement of current work; similar idea of artifact

removal by wavelet-denoising along with utilizing the known signal charac-

teristics, can be applied with some modification on other biomedical signal

processing/analysis application areas. The signal of interest could be either

neural or non-neural biomedical signals.

7.2.2.1 Neural Signals

• Artifact removal from ECoG/iEEG and sub-scalp EEG data for epilepsy

seizure monitoring



215

• Motion artifact removal from Ambulatory EEG

• Metallic interferences and artifact removal from MEG

• Artifact removal from peripheral nerve recordings for neural prosthe-

ses applications.

• Stimulation artifact removal from DBS or any other stimulation dur-

ing simultaneous neural recording and stimulation.

7.2.2.2 Non-Neural Biomedical Signals

• Artifact removal from ambulatory ECG or PCG for wearable health-

care monitoring applications.

7.2.2.3 Software GUI for Complete Solution

A software GUI is possible to develop like the kinds of EEGLAB or BCILAB

and make it available in online for free as a part of neuroinformatics tools

initiative taken by International Neuroinformatics Coordinating Facility

(INCF). Two types of software tool can be developed as follows:

• Signal-specific artifact removal from neural signals (e.g. intracortical/in-

vivo, intra-cranial/ECoG, sub-scalp EEG and scalp EEG)

• Application-specific artifact removal (e.g. Seizure detection, mental

fatigue detection, BCI applications, Alzheimer diagnosis, sleep stud-

ies, depression studies, general neuroscience studies, etc.).
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Journal of physiology, 160(1):106, 1962.

[12] [online]. available. http://en.wikipedia.org/wiki/Action_

potential.

[13] [online]. available. https://en.wikipedia.org/wiki/

Electroencephalography.

[14] [online]. available. http://www.mayoclinic.org/

http://en.wikipedia.org/wiki/Electrophysiological
http://en.wikipedia.org/wiki/Electrophysiological
http://en.wikipedia.org/wiki/Action_potential
http://en.wikipedia.org/wiki/Action_potential
 https://en.wikipedia.org/wiki/Electroencephalography 
 https://en.wikipedia.org/wiki/Electroencephalography 
http://www.mayoclinic.org/tests-procedures/EEG/multimedia/EEG-brain-activity/img-20005915 


218

tests-procedures/EEG/multimedia/EEG-brain-activity/

img-20005915.

[15] M Ungureanu, C Bigan, R Strungaru, and V Lazarescu. Independent

component analysis applied in biomedical signal processing. Measure-

ment Science Review, 4(2):18, 2004.

[16] Arthur Flexer, Herbert Bauer, Jürgen Pripfl, and Georg Dorffner.

Using ica for removal of ocular artifacts in eeg recorded from blind

subjects. Neural Networks, 18(7):998–1005, 2005.

[17] Irene Winkler, Stefan Haufe, and Michael Tangermann. Automatic

classification of artifactual ica-components for artifact removal in eeg

signals. Behavioral and Brain Functions, 7(1):30, 2011.

[18] Arnaud Delorme, Terrence Sejnowski, and Scott Makeig. Enhanced

detection of artifacts in eeg data using higher-order statistics and in-

dependent component analysis. Neuroimage, 34(4):1443–1449, 2007.

[19] Carlos Guerrero-Mosquera and Angel Navia-Vázquez. Automatic re-

moval of ocular artefacts using adaptive filtering and independent

component analysis for electroencephalogram data. IET signal pro-

cessing, 6(2):99–106, 2012.

[20] Antti Savelainen. An introduction to eeg artifacts. Aalto University

School of Science: Systems Analysis Laboratory, 20, 2010.

http://www.mayoclinic.org/tests-procedures/EEG/multimedia/EEG-brain-activity/img-20005915 
http://www.mayoclinic.org/tests-procedures/EEG/multimedia/EEG-brain-activity/img-20005915 
http://www.mayoclinic.org/tests-procedures/EEG/multimedia/EEG-brain-activity/img-20005915 
http://www.mayoclinic.org/tests-procedures/EEG/multimedia/EEG-brain-activity/img-20005915 


219

[21] Bill Scott. Developments in eeg analysis, protocol selection, and feed-

back delivery. Journal of Neurotherapy, 15(3):262–267, 2011.

[22] Lihong Zhang, Dingyun Wu, and Lianhe Zhi. Method of removing

noise from eeg signals based on hht method. In Information Sci-

ence and Engineering (ICISE), 2009 1st International Conference

on, pages 596–599. IEEE, 2009.

[23] Yan Long Wang, Jin Hua Liu, and Yuan Chun Liu. Automatic re-

moval of ocular artifacts from electroencephalogram using hilbert-

huang transform. In Bioinformatics and Biomedical Engineering,

2008. ICBBE 2008. The 2nd International Conference on, pages

2138–2141. IEEE, 2008.

[24] Behnam Molavi and Guy A Dumont. Wavelet-based motion arti-

fact removal for functional near-infrared spectroscopy. Physiological

measurement, 33(2):259, 2012.

[25] Frances C Robertson, Tania S Douglas, and Ernesta M Meintjes.

Motion artifact removal for functional near infrared spectroscopy: a

comparison of methods. Biomedical Engineering, IEEE Transactions

on, 57(6):1377–1387, 2010.

[26] Xinyi Yong, Mehrdad Fatourechi, Rabab K Ward, and Gary E Birch.

Automatic artefact removal in a self-paced hybrid brain-computer

interface system. Journal of neuroengineering and rehabilitation,

9(1):50, 2012.



220

[27] Md Khademul Islam Molla, Md Rabiul Islam, Toshihisa Tanaka, and

Tomasz M Rutkowski. Artifact suppression from eeg signals using

data adaptive time domain filtering. Neurocomputing, 97:297–308,

2012.

[28] Ivan Gligorijevic, Marleen Welkenhuysen, Dimiter Prodanov, Silke

Musa, Bart Nuttin, Wolfgang Eberle, Carmen Bartic, and Sabine

Van Huffel. Neural signal analysis and artifact removal in single

and multichannel in-vivo deep brain recordings. In in Proc. of 4th

Annual Symposium of the IEEE-EMBS Benelux Chapter (IEEE-

EMBS), pages 79–82, 2009.

[29] George J Tomko and Donald R Crapper. Neuronal variability:

non-stationary responses to identical visual stimuli. Brain research,

79(3):405–418, 1974.

[30] Michael S Lewicki. A review of methods for spike sorting: the detec-

tion and classification of neural action potentials. Network: Compu-

tation in Neural Systems, 9(4):R53–R78, 1998.

[31] Hidekazu Kaneko, Hiroshi Tamura, and Shinya S Suzuki. Tracking

spike-amplitude changes to improve the quality of multineuronal data

analysis. Biomedical Engineering, IEEE Transactions on, 54(2):262–

272, 2007.

[32] Aharon Bar-Hillel, Adam Spiro, and Eran Stark. Spike sorting:



221

Bayesian clustering of non-stationary data. Journal of neuroscience

methods, 157(2):303–316, 2006.

[33] Kevin T Sweeney, Sean F McLoone, and Tomas E Ward. The use of

ensemble empirical mode decomposition with canonical correlation

analysis as a novel artifact removal technique. Biomedical Engineer-

ing, IEEE Transactions on, 60(1):97–105, 2013.

[34] Doha Safieddine, Amar Kachenoura, Laurent Albera, Gwénaël Birot,
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Kirby, and Artem Sokolov. Geometric subspace methods and time-

delay embedding for eeg artifact removal and classification. Neu-

ral Systems and Rehabilitation Engineering, IEEE Transactions on,

14(2):142–146, 2006.

[138] Siew-Cheok Ng and Paramesran Raveendran. Enhanced rhythm

extraction using blind source separation and wavelet transform.

Biomedical Engineering, IEEE Transactions on, 56(8):2024–2034,

2009.

[139] P LeVan, E Urrestarazu, and J Gotman. A system for automatic arti-

fact removal in ictal scalp eeg based on independent component anal-



240

ysis and bayesian classification. Clinical Neurophysiology, 117(4):912–

927, 2006.

[140] Wim De Clercq, Anneleen Vergult, Bart Vanrumste, Wim Van Paess-

chen, and Sabine Van Huffel. Canonical correlation analysis applied

to remove muscle artifacts from the electroencephalogram. Biomedi-

cal Engineering, IEEE Transactions on, 53(12):2583–2587, 2006.

[141] Javier Mateo, Ana Maria Torres, Maria Garcia, et al. Eye inter-

ference reduction in electroencephalogram recordings using a radial

basic function. Signal Processing, IET, 7(7):565–576, 2013.

[142] Ping He, G Wilson, and C Russell. Removal of ocular artifacts from

electro-encephalogram by adaptive filtering. Medical and biological

engineering and computing, 42(3):407–412, 2004.

[143] Sadasivan Puthusserypady and Tharmalingam Ratnarajah. h∞ adap-

tive filters for eye blink artifact minimization from electroencephalo-

gram. Signal Processing Letters, IEEE, 12(12):816–819, 2005.

[144] Carrie A Joyce, Irina F Gorodnitsky, and Marta Kutas. Automatic

removal of eye movement and blink artifacts from eeg data using

blind component separation. Psychophysiology, 41(2):313–325, 2004.

[145] Junshui Ma, Sevinç Bayram, Peining Tao, and Vladimir Svetnik.

High-throughput ocular artifact reduction in multichannel electroen-



241

cephalography (eeg) using component subspace projection. Journal

of neuroscience methods, 196(1):131–140, 2011.

[146] Kianoush Nazarpour, Yodchanan Wongsawat, Saeid Sanei, Jonathon

Chambers, Soontorn Oraintara, et al. Removal of the eye-blink

artifacts from eegs via stf-ts modeling and robust minimum vari-

ance beamforming. Biomedical Engineering, IEEE Transactions on,

55(9):2221–2231, 2008.

[147] Hae-Jeong Park, Do-Un Jeong, and Kwang-Suk Park. Automated

detection and elimination of periodic ecg artifacts in eeg using the

energy interval histogram method. Biomedical Engineering, IEEE

Transactions on, 49(12):1526–1533, 2002.

[148] Junshui Ma, Peining Tao, Sevinç Bayram, and Vladimir Svetnik.
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Appendix A

Source Codes and Artifact

Templates

A.1 Open Source MATLAB Codes for

Artifact Removal

A.1.1 Artifact Removal from In-Vivo Neural Signals

MATLAB source code for artifact removal from in-vivo neural signals can

be found from following link

https://drive.google.com/open?id=0B_SqwPnI9VgBeTIxUVJEdGs3elU

https://drive.google.com/open?id=0B_SqwPnI9VgBeTIxUVJEdGs3elU
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A.1.2 Artifact Removal from EEG for Seizure Detection

Application

MATLAB source code for artifact removal from EEG signals for eplilepsy

seizure monitoring application can be found from following link

https://drive.google.com/open?id=0B_SqwPnI9VgBNm01ZTJoZ0h1SFk

A.1.3 Artifact Detection and Removal from EEG for BCI

Application

MATLAB source code for artifact removal from EEG signals for BCI ap-

plication can be found from following link

https://drive.google.com/open?id=0B_SqwPnI9VgBcFh5YjJ5cEM3T00

A.2 Artifact Templates

A.2.1 In-Vivo Neural Recording

Sample neural recording and synthesized datasets with artifact templates

can be found from

https://www.dropbox.com/sh/k200ofw17vm3rg1/AADlFiVU3Qic40qUoAL5aHPaa?

dl=0

A.2.2 EEG Recording

Some EEG artifact templates and synthesized EEG data can be found from

the shared link

https://drive.google.com/open?id=0B_SqwPnI9VgBNm01ZTJoZ0h1SFk
https://drive.google.com/open?id=0B_SqwPnI9VgBcFh5YjJ5cEM3T00
https://www.dropbox.com/sh/k200ofw17vm3rg1/AADlFiVU3Qic40qUoAL5aHPaa?dl=0
https://www.dropbox.com/sh/k200ofw17vm3rg1/AADlFiVU3Qic40qUoAL5aHPaa?dl=0
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https://drive.google.com/folderview?id=0B_SqwPnI9VgBZ1MzNVFrQlBWRnM&usp=

sharing

https://drive.google.com/folderview?id=0B_SqwPnI9VgBZ1MzNVFrQlBWRnM&usp=sharing
https://drive.google.com/folderview?id=0B_SqwPnI9VgBZ1MzNVFrQlBWRnM&usp=sharing
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