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A Wavelet-Based Artifact Reduction from Scalp
EEG for Epileptic Seizure Detection

Md Kafiul Islam, Amir Rastegarnia, and Zhi Yang

Abstract—This paper presents a method to reduce arti- However, automatic detection and removal of artifacts in such
facts from scalp EEG recordings to facilitate seizure diag- applications is a great challenge problem since, the artifacts
nosis/detection for epilepsy patients. The proposed method is overlap with background EEG rhythms and seizure events in

primarily based on stationary wavelet transform and takes the .
spectral band of seizure activities (i.e. 0.5 - 29 Hz) into account to both temporal and spectral domain. On the other hand, the

separate artifacts from seizures. Different artifact templates have artifacts are of various types related to their origins, waveform
been simulated to mimic the most commonly appeared artifacts shapes, frequency characteristics which make it difficult to
in real EEG recordings. The algorithm is applied on three sets (ifferentiate them from the signal of interest.

of synthesized data including fully simulated, semi-simulated and Many traditional approaches have been proposed to remove
real data to evaluate both the artifact removal performance and . :

seizure detection performance. The EEG features responsible OF attenuate' artifacts from recorded EEG S'Qnals [2]_[14,]'
for the detection of seizures from non-seizure epochs have beenThe most widely used methods for attenuating artifacts in
found to be easily distinguishable after artifacts are removed and EEG signals are based on blind source separation such as
consequently the false alarms in seizure detection are reduced.independent component analysis (ICA) and canonical corre-
Results from an extensive experiment with these datasets Prove | 5tion analysis (CCA) [9], [11], [15]-[18]. The BSS-based

the efficacy of the proposed algorithm, which makes it possible to lgorith h h b : i L
use it for artifact removal in epilepsy diagnosis as well as other algorithms assume that the observations are linear mixing

applications regarding neuroscience studies. of the sources and the number of sources is equal or less
Index Terms—Artifact, Scalp EEG, Epilepsy, Seizure detection, than the number of observqtlons._ Another assumption is that
Stationary Wavelet Transform. the sources have to be either independent for ICA based

methods or maximally uncorrelated for CCA based methods.
Beside these assumptions, there are some issues that affect the
usefulness of BSS-based methods such as

Some ictal events can only be found in few channels if
it is a focal seizure.

Some of the artifacts are localized in a single channel,
resulting in failure to identify the artifact source in the
cross-channel analysis.

Detection of artifactual IC is not automatic or semi-
automatic given that the reference channel that records
the artifactual source separately is available [3].

The artifactual independent component is often found

I. INTRODUCTION

Approximately 2% of the world population suffer from
epilepsy seizures. The occurrence of seizure is almost un-’
certain which is the main cause of disability associated with
epilepsy [1]. To reduce this uncertainty, a recording system that®
provides early and accurate seizure detection with immediate
warning is highly desired. One way to achieve that is to use
long-term EEG recording to detect the characteristic EEG*®
waveforms during seizures. The prolonged EEG recordings
not only can increase the chance of detecting an ictal event
seizure) or an interictal epileptic discharge, but also useful® ) . .
i(n the d?agnosis of non-epﬁep?ic paroxysr%al disorders com- to_be.m|xed with neural S|gpals a_md thgrefore. complete
pared to a routine EEG. Unfortunately, EEG recordings are rejection of such IC results in serious signal distortion.
often contaminated by different forms of artifacts such akhe methods in [8], [9], [12], [19] rely on adaptive filtering
artifacts due to electrode displacement and pop-up, motitsh remove artifacts from EEG signal. These methods are
artifacts, ocular artifacts and EMG artifacts from muscl@PpPlicable only when there is any reference artifact channel
activity, which reduce the accuracy of recorded EEG Sign@\_/ailable. However, due to diversity of artifacts for different
Besides, some artifacts may increase the false positive rgt@vements and in different surrounding environments, such
during seizure detection while some certain types of seizur&derence channel is not feasible. Other filtering methods like
can be misdiagnosed as non-epileptic events when they Kadman, Wiener and Particle filters, however, do not require
submerged/masked under artifacts. Thus, in order to correcy extra reference channel, but they need a-priori user input
diagnose epilepsy, it is extremely important to remove sué® function which may not be feasible always [6]. Some other
offending artifacts automatically, prior to seizure detectiofiMitations of the existing artifact removal methods are:
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for general purpose [24]-[34] and they do not considgrarticular seizure-type epoch by simple mathematical model.
specific target application. As a result, it brings unned-or example, the neonatal seizure events can be simulated from
essary complexity in their algorithms and also results @ free online database available at [39]. This EEG simulator
over-correction of data. has mainly two parts: a background simulator and a seizure
In this paper, we develop an automated algorithm to réimulator [40], [41]. On the other hand, if a seizure-type
move artifacts as much as possible without distorting tif@ecific database (epilepsy patient database) is available where
signal of interests. The proposed algorithm is based on ¢ seizure events are labeled by the clinicians, then we can
stationary wavelet transform (SWT) and takes the spect@lf0 use such database to generate the reference seizure to
band of seizure activities into account to separate artifadt¢ used for subsequent stages. However, some preprocessing
from seizures. The reason of choosing wavelet transfo$tEPs are necessary before starting to use such database. One
over other methods (e.g. BSS, EMD, Adaptive Filteringdf them is to band-pass filter the raw database from 0.5 Hz to
etc.) is its ability to decompose single-channel EEG da# Hz to eliminate other signal components and to amplify the
into different frequency bands with high temporal resolutioflesired seizure activities (since frequency band of seizure is
followed by easier denoising technique [35]. This is dorf@5~29 Hz [42], [43]. Letxx;, be the bandpass-filtered epoch
with reasonable computational complexity compared with BS#hich will be utilized in stage-3 for similarity check.
or EMD and without requiring any reference channel unlike
adaptive filtering. In addition, the choice of SWT (also knowg  preprocessing
as Undecimated Wavelet Transform) over discrete waveIeLI_ beai ith. lets denote th led EEG
transform (DWT) is the factor that SWT is translational- . 0 begin with, fe Traw (1) denote € sampled raw |
invariant since it involves upsampling of the filter coefficientg'gm"I which is sampled af, Hz wh.erev? is the discrete-time
instead of downsampling unlike in DWT [36]. Therefore smalpdex' we assume that the power-line interference of 50/60 I—_|z
shifts in a signal can't cause large changes in the wavel"'eqd the baseline of raw EEG have already been removed prior

coefficients and large variations in the distribution of energy this preprocessing s'Fage. In the preprocessing, the incoming
in the different wavelet scales in SWT unlike in DWT an ignal is firstly divided intanon-overlappingepochs with size

consequently denoising with DWT often results in introducin8f N. Then, thejth epoch is given by

of artifacts in the signal near discontinuities during signal Traw(GN — 1)
reconstruction [23], [37], [38]. Zraw (GN — 2)
The proposed method is evaluated for both real and simu- Xj = (1)
lated EEG data where both data consist of epileptic seizures :
and artifacts. By extensive testing, it has been shown that Zraw(iN — N)

the proposed algorithm can reduce artifacts to an extent

that can significantly increase the performance of a seizd¥te that the choice of epoch duration plays an important

detector/classifier, which proves its suitability to use in sudRle in both amount of artifact removal and amount of dis-

EEG applications for epilepsy diagnosis. tortion made to the signal of interest (i.e. seizure events). In
The rest of this paper is organized as follows. Section [@ddition, in case of automated seizure detection method to

provides the methods of data collection and synthesis. Sectig@rk after our proposed algorithm is applied, the valueNof

Il discribes the proposed method. In Section 1V, formulatiowill determine the minimum time delay for seizure detection

and analysis for performance evaluation are presented. Secffigr its onset. This epoch by epoch processing will allow

V provides the simulation results and discusses about tknost no distortion to signal of interest with the penalty

performance of the proposed algorithm. Section VI give® less amount of artifacts to be removed.Nf is too low

concluding remarks. (e.0. Fﬁ < 1 sec.), then such short duration epoch may not
represent seizure waveform properly (the typical duration of
Il. PROPOSEDALGORITHM seizure event may be several seconds in general) and likely to

The first priority of the proposed artitact removal algorithn?e confused with artifact waveform (artifacts tend to be more

. : i . N
is not to distort any seizure waveforms at any cost and thent{gnaent than se|_zure_). WheN is too high (e.g_. F, = 5
. . ..sec.), then there is high chance that lot of artifacts will be
remove artifacts as much as possible. The proposed algorithm .
: : missed to be detected and hence will lower the amount of
has total four stages out of which stage-0, ireference

generationcan be obtained offline prior to the incoming of"’lrt'fact removal. In our algorithm, we have foun@é& as 3-

: . sec to be optimum after trying different values émpirically.
EEG data. A block diagram for the proposed method is Shov}ﬁ\rl‘though EEG signal is nonstationary but it can be considered

n F'g'. 1. The rest of the stages can _on_ly function during th:fs stationary for shorter duration epochs (e.g. 1 sec). Therefore
incoming stream of data. The description of the stages are o ; .
iven below or each of such epoch, the statistical properties of time-
g ' frequency representation achieved by SWT can be considered
. as stationary too. Now, sometimes there are some slow artifacts

A. Reference Generation (e.g. ocular or movement artifacts) that last ferl sec, e.g.
This stage generates a reference seizure epoch of Iéngti-3 sec. So in order to capture the full duration of artifacts
(i.e. duration ofN/ F; second) either from an available seizurethe epoch size may be required to more than 1 sec, i.e. 2

type specific labeled seizure database or from simulatingoa 3 sec. Again, if the epoch size is too large (exg.3
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Stage-1: Preprocessing Stage-2: Wavelet Decomposition Stage-4: Signal Reconstruction
Single-Channel _| i XJ Perform SWT Denoise a;5 New Approx.
Raw EEG (N-length Epoch) (Haar, L=8) (Modified Threshold) Coeff. a’js
. 3 X . T {d,—d} New Detail
High-Pass Filter Ip | Calculate Universal |~ i3~ s Denoise djy, dj» | Coeff. d’-d) Inverse SWT Reconstructed
(30 Hz) Threshold N - . — EEG
(Modified Threshold) (Reconstruction)
Stage-0: Generate Reference Stage-3: Decision
{d}; —djs}
Simulate Seizure Seizure
(N-length Epoch) ) X Similarity Check
Band-Pass Filter bp Measures hether Artifact | Artifact Denoise d. +-d
Labeled Sei: (Copiitliz) {eandtiiEn ey or Seilur; * (M:c;:f‘i’:ieThriss-h:L)
Patient Specific abeled Seizure Mutual Info)
. Epoch
Seizure Database
(from Expert)

Fig. 1: The overall process flow of the proposed method.

sec), then the stationary assumption of EEG will no long _ Seizure Activities R
valid, and consequently brings unavoidable errors in detecti [swrcoett. | @, [ 4, | 4y | 4, | 4 | 4y | 4y | dy | a
followed by removal of artifacts. Another point to note thal[ Freq. Bana

. . X i R iz) 64-128 | 32-64 | 1632 | 8-16 4-8 2-4 1-2 0.5-1 | 0-0.5
in order for automated seizure detection to work in real-tin L—¢

processing of epilepsy data, the epoch size cant be too long;

otherwise it would create non-acceptable amount of delay ffd- 2: The frequency bands of wavelet coefficients after

seizure detection applications. perfor_mmg IeveI_-8 SWT on the raw EEG data_vyhlch has
After segmentation, each epoch is passed through a hightyPical sampling frequency of 256 Hz. Coefficients that

pass filter of 30 Hz to obtain signals which likely to hav&°rrespond to the seizure activities are frdm to d;s.

least seizure information (as seizure activities lie between

g.ri)if;cgsgarj gt;?:ria[é\t\/za{\’/e[g.g%')h:#}fgrogflagry Ell,%r;egz(?;e&r;‘cysub—bands to make decisions on where to denoise carefully

its corresponding universal threshold [44], [45] is calculate _nd where not. Fig. 2 shows the frequency sub-bands of the

The reason, computation and use of such threshold will gcomposed detail coefficients and the final-stage approximate

discussed in stage-3. Finally, both the high-pass filtered epc?%?ﬁident after 8-level SWT is performed on the raw EEG

and threshold value are passed to stage-3 for double chec p. Itis clear tha{d; s, -~ ,d;s} correspond to the seizure
decide whether an epoch is artifactual or seizure. requency band and hence during denoising process, we need
to be very careful to handle these coefficients. The other three

coefficients, i.ed; 1, d;» anda; s can be denoised by applying

C. Wavelet Decomposition and Denoising the modified universal threshold directly without requiring the
1) Wavelet decompositionWavelet decomposition and decision stage.

subsequently removing unwanted artifacts by applying thresh-2) Denoising:We use non-negativgarrote shrinkage func-
old is a familiar denoising process in biomedical signakon during denoising since it has some appealing properties
[38]. Usually, the denoising process refers to removing higf being less sensitive to input change, having lower bias and
frequency noise by thresholding the detail coefficients aftbeing continuous [46]. This is a nice trade-off between soft and
wavelet decomposition. However, in this paper, by using ti@rd threshold function in terms of amount of artifact removal
term denoising, we refer to removing artifactual componen@d signal distortion [46] and is given by
from neural signals in the wavelet domain, irrespective of
whether it is high-frequency or low-frequency artifacts. The (G, 0) = d;‘,j |djel < tje @
objective of this stage is to decompose and analyse the raw 9\, Lie |dj.e| >t
epoch with a reasonable time-scale resolution in wavelet '
domain for possible identification of artifactual componentshereg(j,¢) is the garrote threshold function at each decom-
in the later stage. To this end, stationary wavelet transformpssition level of¢ for epochyj, andt; , denotes the threshold
performed on the epocHs;},>1 with level-8 decomposition value. It is from the fact that hard threshold function is
by Haar as basis wavelet which results in final approximatdiscontinuous that produces large variance (i.e. very sensitive
a;s and detail coefficientd; ,d; 2, - ,d;s. Although there to small changes in the input data) and hence it induces artifact
are many types of wavelet transform (e.g. DWT, CWT, SWTtself when there is a spike-like transient artifacts. On the other
etc.), we chose SWT for its advantage of being translatiorfand, soft threshold has large bias in the denoised signal which
invariant [38]. The choice for level of decomposition is mainlyesults-in under-correction of artifacts. Therefore we decided
inspired from the bandwidth of EEG signal (i.e. 0.05 - 12& choose Garrote threshold function which is a balanced
Hz) and dominant frequency band of seizure activities (i.approach between hard and soft threshold and doesnt have
0.5 - 29 Hz) in order to have enough number of frequendile mentioned disadvantages [46].

d]'ye
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To denoise the critical coefficien{sl; 3, - - ,d; s}, we have TABLE I: Pseudo code for the separation of seizures from
used modified universal threshold reported by [45] artifacts. The decision is made by the similarity based thresh-
olding.
thy=KajV2In N, 3)
’ Decision Making Remarks/Comment
where in (3) V is the length of epoch andy;, is the
estimated noise variance far; , which is usually calculated IF1G1I2 Tengn .
- 3. y k= 3 Don’t denoise the epoch
by following formula [23] i=
median(|wj ¢|) 4 Elseif Tgy,, < |Gl < Teyy,
at 0.6745 if |%np| > Thp 4
ko= 1 Denoise carefully
wherew; , is the wavelet coefficient at théh decomposition Else '
level (i.e.w; , = a;, for approximation coefficient and; , = k = 15
D, , for detail coefficient.). The new paramet&rin (4) comes Else ’
from the empirical observations [45]. It is given as k= 1 Fully denoise
1A
End

K— K4 (0< K4 <1) for thresholding a; g )
| Kp (1<Kp <3) for thresholding d; ,

where, K = K4 is selected for thresholding approximate
coefficienta; s and select = Kp to threshold all the detail E. Reconstruction
coefficients ¢;,, £ = 1,2,---,8). The tuning of parameter

K is discussed in Appendix A. In the final stage of reconstruction, based on the decision

stage, we either apply thresholding (fully or carefully) or let

the coefficients{d, s, - - ,d; s} remain same. Finally with all

the new set of coefficients obtained from stage-2 (dl’}aTl

- dj,and a); g) and the ones obtained from the first step of
The most important part of our artifact removal algorithm ithis stage (i.e{d;,---,d;s}), we apply inverse SWT to

stage-3, i.eDecision Depending upon this stage, the decisioreconstruct the EEG epochs. Thus a new sequence of data so

of whether an epoch is to be detected as artifactual or seizureadled reconstructed datas obtained.

made. In addition, if there is possibility for an epoch to be both

artifactual and seizure, how carefully that particular epoch to

D. Decision

be denoised to remove artifacts, is also decided in this stage. [1l. M ETHODS AND EXPERIMENTS
The first step of this stage is to measure the similarity between _
epochs of decomposed coefficierfd; s, - ,d;s} coming A Data Collection

from stage-2 and reference epochs:gf coming from stage-0.  Real EEG recordings are downloaded from CHB-MIT Scalp
The similarity is measured in terms of either correlation valyeg g patabase [47] which was collected from the Children’s
or mutual information. Depending on the similarity values, Weogpital Boston. The database consists of EEG recordings
choose two levels of threshold: one is upper lifif;, and  from pediatric subjects with intractable seizures and the pa-
the other one is lower limif},,,. Hence three conditions arisejants were monitored for up to several days. The signals
which results in three decisions: if it is high likelyhood to bg,;o sampled at 256 Hz with 16-bit resolution. Apart from
a seizure, then denoising is not performed on that epoch; ifﬂj‘tat, we have also performed some simple experiments to
is in between seizure and artifacts, then we carefully denoigg.qrq 32-channel EEG data with a healthy subject by using
the epoch and finally if it is least likely to be seizure thefhe commercial Mitsar-EEG-202 recorder as shown in Fig.
we fully denoise that epoch. A pseudo code for this decisie) The subject is asked to perform specific task in order to
stage is provided in Table I. To double check apart from thgeorg and characterize some common artifacts, e.g. chewing,
similarity based decision, we al§o take mput from the OUtpE!_FNaIIowing, head movement, body movement, eye blinking,
of stage-1 where we have a highpass filtered epoch andd{g movement, etc. The timing of those tasks are noted down

threshold value. Since we assume that the epaghis less  anq |ater confirmed with the corresponding recorded signals.
likely to be seizure and most likely to be artifacts if the

value exceeds the calculated threshold vélyg, so if any

of the t_hree Qecisipns made f_rom similarity _based condit?ggn_ Data Synthesis

contradicts with this hypothesis, then to be in the safe side,

the epoch is not denoised in order to preserve the seizurd) Semi-Simulated:We have synthesized an artifact-free
events all the time. However, in such case, where the epdeBEG sequence of 5 min long from real EEG collected from
is actually artifactual and not seizure, but due to the decisi@HB-MIT database as ground truth and different types of
made not to denoise the epoch, we pay the penalty of lesswulated artifact waveforms to test our artifact removal al-
artifact reduction. gorithm. The process of data synthesis is shown in Fig. 4.
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Fig. 3: EEG experiment performed.

Semi-Simulated Data Synthesis Fully-Simulated Data Synthesis

Simulate Seizure
Segment

Labeled Seizure
Segment

artifact removal can be defined respectively as
(6)
)

In the sequel, we introduce the metrics used for artifact
removal and seizure detection in more detail.

€br (TL) = Zart (TL) - xrcf(n)v

€ar(N) = Trec(N) — Tref(n).

A. Metrics for Artifact Removal

The performance of the proposed algorithm on the artifact
removal has been evaluated both in terms of the amount
of artifact reduction and the amount of distrotion it brings
into the signal of interest, specially to the seizure events.
Several efficiency metrics have been calculated in both time
and spectral domain to quantify such evaluation. In order to
have fair evaluation and clear idea we also have considered

(Clean EEG)
EEG Segment without
Artifacts and Seizure

The
1)

Simulate
Background EEG

Real EEG Data

Simulate Artifact
Templates

Simulate Artifact
Templates

Fig. 4: lllustration of the synthesis process to generate artifac-
tual EEG data with seizure segment.

2) Fully-Simulated: In this dataset, we have simulated all 2)
three data components: artifacts, seizure event and EEG back-
ground activity (i.e. EEG rhythm), and then combined them
together to make artifactual EEG dataset with seizure events.
The simulated EEG data have been generated according to
the classical theory of Event Related Potentials (ERP) as
described in [48]. The MATLAB code we used to generate
such simulated EEG is available to download for free from
[39].

3)
IV. PERFROMANCEEVALUATION

A fair performance evaluation of any artifact removal al-
gorithm has often been an issue because of few reasons; e.g.
lack of ground truth data, insuffcicient amount of data used,
casual choice of performance metrics and so on. Therefore,
it is often seen that only qualitative evaluation is available
in time domain plot and/or in spectral domain in terms of
PSD plot [20], [22], [37], [49]. In order to have a fair and
complete evaluation, enough quantitative results are required
along with the traditional qualtitative approach. In addition,
further analysis of later stage signal processing is required to
observe the afteraffect of artifact removal. Hence this section
deals on the way of performance evaluation for both artifact
removal and seizure detection accuracy by quantitatively as
well as in qualitative manner. 5)

To define the quantitative metrics used for artifact removal
and seizure detection, we defimgs(n), Tart(n) and ziec(n)
as the discrete time signals of length representing clean
reference signal (artifact-free), artifactual and reconstructed
signal respectively. Then, the error signal before and after

l the amount and duration of artifacts present in the signals.

metrics are described as follows:

A: The reduction in artifact is calculated using the fol-
lowing formula [18]

Here, ¢, denotes the auto-correlation coefficient of the
reference signal at time lag &,,; andc,. are the cross-
correlation coefficient between reference signal with ar-
tifactual and reconstructed signal respectively.

ASNR: Assuming the signals have zero mean, then
ASNR is the difference in SNR before and after artifact
removal is given by the following formula [18]

) L ©
wherec? | o

2 o2 ando? be the variance of reference
signal, error signal before and after artifact removal
respectively.

RMSE: The root mean square error is calculated as
follows

A =100 (1_0“3f_crec @)

Cref — Cart

2
eref
2

€br

2

Lref

o
) — 10logy (
g

2

Car

ASNR = 10log;, (

2

RMSE = (10)

1 N
N nz::l[ear(n)]2~

) Pais: Denote Pree(f), Part(f) and Prec(f) the power

spectral densities of reference signal, artifactual signal
and reconstructed signal respectively, the spectral distor-
tion Pqjs is calculated as follows

11)

ACor: Correlation is the measure of similarity between
two time series in time domain. In order to calculate
the improvement in correlatiodCor due to artifact
removal, the following equation is used

ACor(%) = Zee %t o 100

Cart

12)
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wherec,,; andc,.. are the cross-correlation coefficients — . :>
between reference signal with artifactual and recon | ., X s s e dadicioy
structed signal respectively. torme!
6) ACoh: Coherence is the measure of similarity between _. S . .
two time series in frequency domain and it is defined Fig. 5: Process flow for validation of seizure detection.

between two signals(t) andy(t) as:

|Gy |2 1) Feature E)(t_racfcion:.Feature.extractio.n is an improtant
oGy’ (13) stage _for.classmcatlon in machine Iggrmng on w_h|ch both
classification performance and classifier complexity greatly
where |G,,| is the cross-spectral density betweeft) depends. There are many ways of extracting EEG features for
and y(t); G.» andg,, are the auto-spectral density ofseizure classification that are mentioned in the literature [50]—
x(t) andy(t) respectively. Now, we assum@ohyer be [53]. Most of them use the statistical features (e.g. entropy
the coherence between reference and artifactual sigi&4], [55], kurtosis, skewness, line length [50], variance, min,
while Coh,¢ be the coherence between reference amdax, maxima count, etc.) either from directly time domain, or
recosntructed signal, then the average improvement fiom both time and frequency domain or even some combined
coherence due to artifact removal denoted&¢oh is spatial (channel-wise) domain based features along with time

ACoh =

calculated by following equation: and frequency. Some recent literatures also use wavelet domain
Coh.« — Coh based features to extract the desired frequency sub-bands [52],
ACoh(%) = acft n bef s 100 (14) [53]. In this paper, we use a single-dimension feature so called
ONper

Sample Entropy which is described below.
7) SNDR: Signal to noise and distortion ratio in frequency , sample Entropy: Sample entropy or SampEn which was

domain is calculated as follows: introduced by [54], quantifies the complexity of a time se-
Pros ries data and recently it has become an attractive measure
SNDR = 10log;, (Pe) : (15) in analysing non-linear physiological signals [55]. Unlike

other entropy or complexity measures (e.g. approximate
whereP,.s and P, are the power spectral densities of  entropy or ApEn), the advantage of SampEn is that it
Tref(n) ande, (n) respectivelye,.(n) is ey, (n) for before is resistant to the short-duration transient interferences
ande,,(n) for after artifact removal respectively. like spikes. It is the negative natural logarithm of an
8) SNR.,¢: Artifact SNR is calculated considering artifact  estimate of the conditional probability that if two sets of
as signal and reference neural signal as noise using the simultaneous data points of length match point wise

following formula within a tolerancer then two sets of simultaneous data
o2 points of lengthm + 1 also match pointwise within the
SNRart = 10log, ( Ser ) . (16) tolerancer and represented asmpEn(m,r, N) where
Trot m, r and N are the embedding dimension, tolerance and
9) ATa.: It denotes the artifact duration out of total data ~ nNumber of data points respectively [54].
length in percentage and calculated as follows We assume a time-series data epoch of lenyth=
x1,%2,x3,...,oN; & template vector of lengtin, such
ATart(%) — Tary x 100, (17) thatXm(i) = Xy Lit1y Lit2y oevy Titm—1 and the distance
total function d[x,, (i), x., (j)] for ¢ # j. Now the number of
whereT,,; and ;o are the time duration of artifactand ~ Vector pairs in template vectors of lengih andm + 1
whole data sequence respectively. having d[zm (i), ()] < r are denoted byB and A

respectively. Thus the sample entropy is defined as

B. Metrics for Seizure Detection SampEn = — loge(é) (18)
Seizure detection/classification still is an active research B

problem in the epilepsy research community. There are several Where, A = no of template vector pairs having

seizure detection methods available in the literature and none @[Zm (%), zm(j)] <r of lengthm + 1

of them can claim to be robust for every patient and in every and B = no of template vector pairs having

recording/surrounding enovironment as most of them are eval-  @Zm (i), m(j)] <1 of lengthm

uated based on small quantity of dataset and do not conside?) SVM Classification:Support vector machine is a super-
the effects of all types of artifacts. However, since the purposesed learning based classifier which is widely used in simple
of this study is not to develope a seizure detection algorithbinary linear classification [56]. In our problem of classify-
but to verify the performance of seizure analysis after theg seizure epoch from non-seizure epoch, we have used a
proposed artifact removal algorithm is applied, therefore gimple SVM classifier whose input is the extracted SampEn
this section we will show some examples of simple seizufeature. Initially the classifier is trained with the SampEn
analysis or measurement available in the literature to provelues calculated from each epoch as training samples. The
the efficacy of the artifact removal algorithm. benchmark epochs are obtained from reference signal where
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Artifact Removal Algorithm Applied to Real EEG Data ' ' :
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B0 e e e e Fig. 7: The removal result after the proposed algorithm is ap-

Time, Sec plied on an artifact-free seizure segment labeled and collected

. _ from MIT-CHB dataset. The reconstruction is almost perfect
Fig. 6: The removal result after the proposed algorithm Shen there is no visible artifact

applied on our recorded EEG.

both artifact free seizure and artifact-free non-seizure epoc | ‘ ]
have known label. Then the classifier is tested with Sampl ‘ . o Gk Loy
values calculated from artifactual signal epochs. Finally tt | & ey L

same designed classifier is again tested with the Sampr' N N
values calculated from reconstructed signal epochs. In bc ‘ : ; ‘ ‘ ‘ ‘
cases, the no. of true positives and false positives are recorc, =

The process flow of seizure detection after artifact removal ¢ .H_M MWM wrrA VJ qdk) W ! I.HL‘QW Mﬂ

shown in Fig. 5. i
o AF(%): If Fyer and Fyg, denote the number of false - e S VU SV
positives for seizure classification before and after artifa ‘ ‘ ‘ ‘ ‘ ‘ ‘ Reconsmaed
removal respectively, then the improvement in number ¢ = | | o o]
false positives, i.eAF(%) is given by A M ML | NS I L
AF(%) — M x 100 (19) % 700 =] 200 T.mimsec 30 £ @ = 500
Fbef me

Fig. 8: The removal result after the proposed algorithm is

V. RESULTS ANDDISCUSSION applied on the semi-simulated EEG data.

A. Qualitative Evaluation

1) Real Data: The proposed algorithm is applied to our
recorded EEG data from a healthy subject with labe&leew-
ing and eye-blink artifacts. The artifact removal result into detect seizure offline after significant reduction of most of
terms of time-domain plot is shown in Fig. 6 for qualitativdéhe artifacts as usually done by the clinicians.
evaluation which suggests a satisfactory removal of both type

s . ] .
of artifacts without distorting the background EEG signals ig.n?;) IZtL(Ialg/ ?;r;u!ztﬁ?';-tkr]zt:;“f'?c;{:'remg;)vaL:ZUIatJr?hTez f;”{]al
the non-artifactual region. imu IS 1y In Fig. 9 w [¢

Another example of artifact removal result is illustrated jgomponents are simulat(_ad. The synthesized arFifactuaI data is
Fig. 7 where there is an artifact-free seizure segment is presgﬁverely contaminated with different types of artifacts and thus

It is obvious from the time-course data that almost perfe@akes it difficult to detect the segment of seizure activities
reconstruction of seizure activities occurs properly. Once most of the artifacts are reduced, its now easy

2) Semi SimulatedAn example of artifact removal algo- to detect seizure segment which also increases the true positive

rithm applied on semi-simulated data is presented in Fig. %@tec'uon.

The artifactual data sequence is made up with real seizuréAnother example of all six types of simulated artifacts and
and real background EEG data where simulated artifacts #ineir reduction is shown in Fig. 10. Here each plot shows each
superimposed. Its obvious that the algorithm can’t remove #&ipe of artifact contaminated segment before and after artifacts
of the artifacts all the time, but can reduce them significantbre removed along with the reference artifact-free segment.
most of the time and more importantly can still preservEhis qualitative illustration proves that most of the time when
the desired seizure activities pretty well. This qualitativehere is no seizure, the algorithm can significantly reduce each
illustration in time domain data shows a better visualizatiaiype of artifacts.
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Fig. 10: Six types of different simulated artifacts that mimicking real artifacts found in the typical scalp EEG recording
environments. The application of proposed artifact removal algorithm can almost successfully remove such artifacts most of
the time without distorting the background EEG signals. The black, red and blue traces denoting reference, artifactual and

reconstructed simulated EEG data respectively. The y-axis is normalized signal amplitude and x-axis is time index with sampling
frequency of 256 Hz.
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, , r r , , Fig. 11: SNDR for signals before and after artifact removal
o % 10 10 Tim:,DOSec =0 o0 o0 “* clearly shows the improvement in signal quality over the entire
frequency band.
Fig. 9: Artifact removal result applied to semi-simulated

dataset-1. The plot is a time course data where all six types

of artifacts are present. Note that, not all of the artifacts afer fu”y simulated data sequence as in F|g 9 before and
removed or attenuated. The reason is that in order to presesy@r artifacts are removed. It is clearly seen that a significant
the seizure events, the amount of artifact reduction has bggfprovement ofSNDR on an average of 5-10 dB over the
compromised. The y-axis unit is normalized signal amplitudentire frequency is made due to artifact removal which proves
the efficacy of the proposed algorithm. Table Il presents the
guantitative metrics of artifact removal with respect to the
strength of artifacts, i.e. different artifact SN R ,,,.;. Table

This sub section quantifies the results obtained both in terfispresents the quantitative metrics of artifact removal with
of artifact removal and the consequence of artifact removagspect to different artifact duratio Tare.

i.e. improvement in seizure detection. 2) Comparison with Other MethodsiWe have compared

1) Artifact Removal ResultAs discussed in Section-V, wethe performance our proposed method with few state-of-the-
have calculated several time and frequency domain metricsatt artifact removal methods (i.e. wavelet-BSS and EMD-BSS
quantify both amount of artifacts removed as well as amoubased methods) in terms of both quantitative removal metrics
of distortion made with respect to both amount and intensififigure 13) and computational time (Figure 14) to roughly
of artifacts present in the data. Fig. 11 shows the calculatéidstrate a comparison the efficacy of our method compared
SNDR over the entire frequency bandwidth of EEG dataith others. The process flow of wavelet-BSS and EMD-BSS

B. Quantitative Evaluation
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available artifact removal methods in terms of the quantitative Chanmel No.
metrics.

Fig. 16: False positive{ P) before and after artifact removal
(shown on top) and improvement of false positivé {P)

- Ml in percentage (shown on bottom) are plotted with respect
to different data sequence/channel no. For seizure detection
— ;

100

In addition the corresponding improvement&iF (%) which
suggests that on average 20-80% improvement is possible after
artifacts are reduced by proposed algoirthm. Please note that,
for this quantification we have simulated 100 different data
sequences each of 200-sec duration where 100-sec is seizure
Proposed  wiCA  wCCA  EMD  EMD-ICA EMD-CCA and rest 100-sec is non-seizure segment. Then for each epoch
of 2-sec, SampEn is calculated and used as a feature for SVM
Fig. 14: Comparison of proposed method with respect to feylassification to quantify the no. af P. The no. of TP in
available artifact removal methods in terms of the compthis simulation remains always 100% due to the single feature
tational time required to process each 1 second of datag#élection. However, these values are not absolute and may
MATLAB simulation. differ depending on the type and size of features, type of
classifier used, length of the seizure segment, epoch duration

based methods is shown in Figure 12. Note that the epo& nd so on. The results are given only for simple understanding

b o . of.the fact that artifacts removal with proposed algorithm can
y-epoch processing is only applied for our proposed methgld nificantly i h ; f sei d .
%é y improve the performance of seizure detection.

and for others we just process the whole sequence at once L .
Ig. 17 shows some common statistical features used in

it's difficult for BSS-based methods to function properly to. . o : :
separate components with small duration of data (i.e. epoc(;ﬁu rature for differentiating seizure epochs from non-seizure

3) Seizure Detection Resultin order to show that artifact ones for both before and aftgr artifact removal. It is obvious
removal by this proposed algorithm not only makes offlinferom the plots that after artifact removal, the features are
easier to distinguish than before artifact removal. Hence the

analysis during seizure detection easier and more accuraté osed alaorithm can also be useful in improving seizure
but also helps the availabe automated seizure detector (A ip 9 . ; P! g sel
ector performance in other seizure detection algorithms

to improve their performance_S|gn|f|cantly. An gxample OWhere combination of different statistical features are used for
false alarms due to artifacts is presented in Fig. 15. HerF ification
we present three sequences of fully simulated EEG dafarosteation.
reference, artifactual, reconstructed and their corresponding
SamEn values calculated with 2-sec time window. For an ideal
case, i.e. without artifact, seizure and non-seizure segments cafihe purpose of this research was to develop an artifact
be easily separated by comparing their average sample entropynoval method in order to make the seizure analysis process
However, in practice, EEG sequence is always contaminategkier for the clinicians and also to improve the performance
with different artifacts and hence it may introduce somef the available automated seizure detection algorithm. In
false alarms due to artifacts. Once most of the artifacts addition, such artifact removal which preserves the seizure
reduced, the no. of false alarms is also reduced significandlyents, can greatly reduce the labor and complexity of seizure
as illustrated clearly in the Fig. 15. detection by making it easy to analyze underlying signal
A guantitative representation of amount of improvement iof interest. To ensure a fair performance evaluation of the
seizure detection is illustrated in Fig. 16 where the no. of falpgoposed method, we performed extensive simulations on both
positives are plotted for both before and after artifact removakal and synthesized data with several metrics to quantify

Computational Time, mSec

9

90

80

70 purpose, SampEn is used as feature and SVM as classifier.
60

50

40
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Fig. 12: General Process Flow of EMD-BSS and Wavelet-BSS Methods
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Fig. 15: An example of false alarms due to artifacts is illustrated where sample entropy is chosen as a feature to separate
seizure from non-seizure (normal) events. Artifact removal can significantly reduce the false alarms by reducing the amount

of artifacts. The y-axis unit is normalized signal amplitude in the top plots.

results. Also an analsyis of a simple seizure detection prowskere o; denotes the standard deviation 4f 5. The value

the efficacy of the method that seizure detection accuragf/m is based on the parameter tuning and can be obtained

can be significantly improved. The results are impressive afrdm some initial several seconds of incoming rE&G data

further improvement of the current algorithm to be able teamples to update the threshold value. From the empirical

remove artifacts in real-time will surely be a breakthrough istudies, the value of m is found as minimum of 3, i.e.

epilepsy patients monitoring. It is, therefore, expected to hage< m < co (See Appendix A of [45]).

more analysis on this particular research to enhance the qualityn order to calculate the value &f,, Decisionstage helps.

of epilepsy patients by ensuring proper seizure diagnosis aitice D, ; and D; » contains higher frequency activities than

treatment. the seizure frequency band (see Fig. 2), therefore value of
kp for first two detail coefficients is selected as 1, i.e. same
as universal threshold. For rest of the detail coefficients, (i.e.

{Dj3s,---,Djg}) the value is chosen based on the decision
APPENDIXA - ’ . SR )
stage’s output as shown in |. The equation is given below:
TUNING OF PARAMETERK
The tuning of parametef, depends on the data distri- 3 case-1
bution of a;s epoch which less likely contains any seizure Kp ={1<k;, <15 case-2wherel=3,4,---,8
events (since its frequency band is 0-0.5 Hz), but contains both 1 case-3
the deltawave and some low-frequency artifacts (mostly large (21)
amplitude slow movement artifacts). So when the histogram
of the data has large deviation from its standard deviation
g ACKNOWLEDGMENT

(large tail on the histogram on either one side or both), it
is more likely due to presence of such artifacts. Therefore awe thank our group members Peng Sun and Wing-kin Tam
value less than 1 is chosen féf, and if there is no such for participating in our EEG experiment to record artifacts.
unusual tail present, theR 4 = 1 is chosen that makes theThe experimental seizure data recorded from epilepsy patients
threshold exactly same as the original universal threshold, isge provided by MIT-CHB online database downloaded from
t’ o =t;,1. The criterion for the choice oK 4 is given below physionet.org. We also express our gratitude to Dr. Chan
Wei Shih Derrick from Dept of Paediatrics, Neurology Ser-
) {1 if max(|A;3s]) >m x oy, vice, KK Women’s and Children’s Hospital, Singapore, for

0<ks<1 otherwise (20) his expert opinion and suggestion regarding epilpesy seizure
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Fig. 17: Different features from EEG data for seizure and non-seizure events calculated for each data segment of time window
1 sec.

TABLE II: Quantitative Metrics of Artifact Removal Results for Different Artifact SNR

Performance Metrics

SNRum (dB) [ X [ ASNR | ARMSE (%) | APSDy;, (%) | ACorr (%) | ACoher (%)
5 623 | 85 62.2 90.5 63.8 255
10 485| 96 67.1 98.8 110.5 53.8

RArt)'

TABLE Ill: Quantitative Metrics of Artifact Removal Results for Different Artifact DurationST a,).

Performance Metrics

AT (%) A ASNR ARMSE (%) | APSDg;s (%) ACorr (%) ACoher (%)

20 44.3 7.8 75.9 98.8 84.5 46.7

25 57.0 8.6 66.5 97.8 75.5 29.8

30 66.2 9.1 51.7 86.3 67.9 30.2

35 57.8 10.8 49.9 99.9 139.7 45.9

40 68.8 111 61.1 99.6 113.5 30.7
Mean 30.87%| Mean 54.71%| Mean 8.27%| Mean 63.92%| Mean 97.55% | Mean 98.91%| Mean 43.05%

detection and affect of artifacts on seizure detection from ajs] K. Sweeney, T. Ward, and S. McLoone, “Artifact removal in physiologi-
cal signals x2014;practices and possibilitidaformation Technology in

Electroencephalogist’s point of view.
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