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A Wavelet-Based Artifact Reduction from Scalp
EEG for Epileptic Seizure Detection

Md Kafiul Islam, Amir Rastegarnia, and Zhi Yang

Abstract—This paper presents a method to reduce arti-
facts from scalp EEG recordings to facilitate seizure diag-
nosis/detection for epilepsy patients. The proposed method is
primarily based on stationary wavelet transform and takes the
spectral band of seizure activities (i.e. 0.5 - 29 Hz) into account to
separate artifacts from seizures. Different artifact templates have
been simulated to mimic the most commonly appeared artifacts
in real EEG recordings. The algorithm is applied on three sets
of synthesized data including fully simulated, semi-simulated and
real data to evaluate both the artifact removal performance and
seizure detection performance. The EEG features responsible
for the detection of seizures from non-seizure epochs have been
found to be easily distinguishable after artifacts are removed and
consequently the false alarms in seizure detection are reduced.
Results from an extensive experiment with these datasets prove
the efficacy of the proposed algorithm, which makes it possible to
use it for artifact removal in epilepsy diagnosis as well as other
applications regarding neuroscience studies.

Index Terms—Artifact, Scalp EEG, Epilepsy, Seizure detection,
Stationary Wavelet Transform.

I. I NTRODUCTION

Approximately 2% of the world population suffer from
epilepsy seizures. The occurrence of seizure is almost un-
certain which is the main cause of disability associated with
epilepsy [1]. To reduce this uncertainty, a recording system that
provides early and accurate seizure detection with immediate
warning is highly desired. One way to achieve that is to use
long-term EEG recording to detect the characteristic EEG
waveforms during seizures. The prolonged EEG recordings
not only can increase the chance of detecting an ictal event
(seizure) or an interictal epileptic discharge, but also useful
in the diagnosis of non-epileptic paroxysmal disorders com-
pared to a routine EEG. Unfortunately, EEG recordings are
often contaminated by different forms of artifacts such as
artifacts due to electrode displacement and pop-up, motion
artifacts, ocular artifacts and EMG artifacts from muscle
activity, which reduce the accuracy of recorded EEG signal.
Besides, some artifacts may increase the false positive rate
during seizure detection while some certain types of seizures
can be misdiagnosed as non-epileptic events when they are
submerged/masked under artifacts. Thus, in order to correctly
diagnose epilepsy, it is extremely important to remove such
offending artifacts automatically, prior to seizure detection.
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However, automatic detection and removal of artifacts in such
applications is a great challenge problem since, the artifacts
overlap with background EEG rhythms and seizure events in
both temporal and spectral domain. On the other hand, the
artifacts are of various types related to their origins, waveform
shapes, frequency characteristics which make it difficult to
differentiate them from the signal of interest.

Many traditional approaches have been proposed to remove
or attenuate artifacts from recorded EEG signals [2]–[14].
The most widely used methods for attenuating artifacts in
EEG signals are based on blind source separation such as
independent component analysis (ICA) and canonical corre-
lation analysis (CCA) [9], [11], [15]–[18]. The BSS-based
algorithms assume that the observations are linear mixing
of the sources and the number of sources is equal or less
than the number of observations. Another assumption is that
the sources have to be either independent for ICA based
methods or maximally uncorrelated for CCA based methods.
Beside these assumptions, there are some issues that affect the
usefulness of BSS-based methods such as

• Some ictal events can only be found in few channels if
it is a focal seizure.

• Some of the artifacts are localized in a single channel,
resulting in failure to identify the artifact source in the
cross-channel analysis.

• Detection of artifactual IC is not automatic or semi-
automatic given that the reference channel that records
the artifactual source separately is available [3].

• The artifactual independent component is often found
to be mixed with neural signals and therefore complete
rejection of such IC results in serious signal distortion.

The methods in [8], [9], [12], [19] rely on adaptive filtering
to remove artifacts from EEG signal. These methods are
applicable only when there is any reference artifact channel
available. However, due to diversity of artifacts for different
movements and in different surrounding environments, such
reference channel is not feasible. Other filtering methods like
Kalman, Wiener and Particle filters, however, do not require
an extra reference channel, but they need a-priori user input
to function which may not be feasible always [6]. Some other
limitations of the existing artifact removal methods are:

• Most of the methods remove single type of artifact and
unable to handle other types e.g. ocular artifact [10], [17],
[20]–[22], motion artifact [18] and muscle artifact [23].

• Many studies have proposed methods to remove artifacts
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for general purpose [24]–[34] and they do not consider
specific target application. As a result, it brings unnec-
essary complexity in their algorithms and also results in
over-correction of data.

In this paper, we develop an automated algorithm to re-
move artifacts as much as possible without distorting the
signal of interests. The proposed algorithm is based on the
stationary wavelet transform (SWT) and takes the spectral
band of seizure activities into account to separate artifacts
from seizures. The reason of choosing wavelet transform
over other methods (e.g. BSS, EMD, Adaptive Filtering,
etc.) is its ability to decompose single-channel EEG data
into different frequency bands with high temporal resolution
followed by easier denoising technique [35]. This is done
with reasonable computational complexity compared with BSS
or EMD and without requiring any reference channel unlike
adaptive filtering. In addition, the choice of SWT (also known
as Undecimated Wavelet Transform) over discrete wavelet
transform (DWT) is the factor that SWT is translational-
invariant since it involves upsampling of the filter coefficients
instead of downsampling unlike in DWT [36]. Therefore small
shifts in a signal can’t cause large changes in the wavelet
coefficients and large variations in the distribution of energy
in the different wavelet scales in SWT unlike in DWT and
consequently denoising with DWT often results in introducing
of artifacts in the signal near discontinuities during signal
reconstruction [23], [37], [38].

The proposed method is evaluated for both real and simu-
lated EEG data where both data consist of epileptic seizures
and artifacts. By extensive testing, it has been shown that
the proposed algorithm can reduce artifacts to an extent
that can significantly increase the performance of a seizure
detector/classifier, which proves its suitability to use in such
EEG applications for epilepsy diagnosis.

The rest of this paper is organized as follows. Section III
provides the methods of data collection and synthesis. Section
II discribes the proposed method. In Section IV, formulation
and analysis for performance evaluation are presented. Section
V provides the simulation results and discusses about the
performance of the proposed algorithm. Section VI gives
concluding remarks.

II. PROPOSEDALGORITHM

The first priority of the proposed artifact removal algorithm
is not to distort any seizure waveforms at any cost and then to
remove artifacts as much as possible. The proposed algorithm
has total four stages out of which stage-0, i.e.reference
generationcan be obtained offline prior to the incoming of
EEG data. A block diagram for the proposed method is shown
in Fig. 1. The rest of the stages can only function during the
incoming stream of data. The description of the stages are
given below.

A. Reference Generation

This stage generates a reference seizure epoch of lengthN
(i.e. duration ofN/Fs second) either from an available seizure-
type specific labeled seizure database or from simulating a

particular seizure-type epoch by simple mathematical model.
For example, the neonatal seizure events can be simulated from
a free online database available at [39]. This EEG simulator
has mainly two parts: a background simulator and a seizure
simulator [40], [41]. On the other hand, if a seizure-type
specific database (epilepsy patient database) is available where
the seizure events are labeled by the clinicians, then we can
also use such database to generate the reference seizure to
be used for subsequent stages. However, some preprocessing
steps are necessary before starting to use such database. One
of them is to band-pass filter the raw database from 0.5 Hz to
30 Hz to eliminate other signal components and to amplify the
desired seizure activities (since frequency band of seizure is
0.5∼29 Hz [42], [43]. Letxxbp be the bandpass-filtered epoch
which will be utilized in stage-3 for similarity check.

B. Preprocessing

To begin with, letxraw(n) denote the sampled raw EEG
signal which is sampled atFs Hz wheren is the discrete-time
index. We assume that the power-line interference of 50/60 Hz
and the baseline of raw EEG have already been removed prior
to this preprocessing stage. In the preprocessing, the incoming
signal is firstly divided intonon-overlappingepochs with size
of N . Then, thejth epoch is given by

xj =


xraw(jN − 1)
xraw(jN − 2)

...

xraw(jN −N)

 (1)

Note that the choice of epoch duration plays an important
role in both amount of artifact removal and amount of dis-
tortion made to the signal of interest (i.e. seizure events). In
addition, in case of automated seizure detection method to
work after our proposed algorithm is applied, the value ofN
will determine the minimum time delay for seizure detection
after its onset. This epoch by epoch processing will allow
almost no distortion to signal of interest with the penalty
of less amount of artifacts to be removed. IfN is too low
(e.g. N

Fs
< 1 sec.), then such short duration epoch may not

represent seizure waveform properly (the typical duration of
seizure event may be several seconds in general) and likely to
be confused with artifact waveform (artifacts tend to be more
transient than seizure). WhenN is too high (e.g. N

Fs
> 5

sec.), then there is high chance that lot of artifacts will be
missed to be detected and hence will lower the amount of
artifact removal. In our algorithm, we have foundNFs

as 3-
sec to be optimum after trying different values empirically.
Although EEG signal is nonstationary but it can be considered
as stationary for shorter duration epochs (e.g. 1 sec). Therefore
for each of such epoch, the statistical properties of time-
frequency representation achieved by SWT can be considered
as stationary too. Now, sometimes there are some slow artifacts
(e.g. ocular or movement artifacts) that last for> 1 sec, e.g.
2-3 sec. So in order to capture the full duration of artifacts
the epoch size may be required to more than 1 sec, i.e. 2
or 3 sec. Again, if the epoch size is too large (e.g.> 3
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Fig. 1: The overall process flow of the proposed method.

sec), then the stationary assumption of EEG will no longer
valid, and consequently brings unavoidable errors in detection
followed by removal of artifacts. Another point to note that,
in order for automated seizure detection to work in real-time
processing of epilepsy data, the epoch size cant be too long;
otherwise it would create non-acceptable amount of delay in
seizure detection applications.

After segmentation, each epoch is passed through a high-
pass filter of 30 Hz to obtain signals which likely to have
least seizure information (as seizure activities lie between
0.5 − 29 Hz band [42], [43]) but contain high frequency
artifacts and gamma waves. Then, for every filtered epochxhp

its corresponding universal threshold [44], [45] is calculated.
The reason, computation and use of such threshold will be
discussed in stage-3. Finally, both the high-pass filtered epoch
and threshold value are passed to stage-3 for double check to
decide whether an epoch is artifactual or seizure.

C. Wavelet Decomposition and Denoising

1) Wavelet decomposition:Wavelet decomposition and
subsequently removing unwanted artifacts by applying thresh-
old is a familiar denoising process in biomedical signals
[38]. Usually, the denoising process refers to removing high
frequency noise by thresholding the detail coefficients after
wavelet decomposition. However, in this paper, by using the
term denoising, we refer to removing artifactual components
from neural signals in the wavelet domain, irrespective of
whether it is high-frequency or low-frequency artifacts. The
objective of this stage is to decompose and analyse the raw
epoch with a reasonable time-scale resolution in wavelet
domain for possible identification of artifactual components
in the later stage. To this end, stationary wavelet transform is
performed on the epochs{xj}j≥1 with level-8 decomposition
by Haar as basis wavelet which results in final approximate
aj,8 and detail coefficientsdj,1, dj,2, · · · , dj,8. Although there
are many types of wavelet transform (e.g. DWT, CWT, SWT,
etc.), we chose SWT for its advantage of being translational
invariant [38]. The choice for level of decomposition is mainly
inspired from the bandwidth of EEG signal (i.e. 0.05 - 128
Hz) and dominant frequency band of seizure activities (i.e.
0.5 - 29 Hz) in order to have enough number of frequency

Fig. 2: The frequency bands of wavelet coefficients after
performing level-8 SWT on the raw EEG data which has
a typical sampling frequency of 256 Hz. Coefficients that
correspond to the seizure activities are fromdj,3 to dj,8.

sub-bands to make decisions on where to denoise carefully
and where not. Fig. 2 shows the frequency sub-bands of the
decomposed detail coefficients and the final-stage approximate
coefficient after 8-level SWT is performed on the raw EEG
data. It is clear that{dj,3, · · · , dj,8} correspond to the seizure
frequency band and hence during denoising process, we need
to be very careful to handle these coefficients. The other three
coefficients, i.e.dj,1, dj,2 andaj,8 can be denoised by applying
the modified universal threshold directly without requiring the
decision stage.

2) Denoising:We use non-negativegarrote shrinkage func-
tion during denoising since it has some appealing properties
of being less sensitive to input change, having lower bias and
being continuous [46]. This is a nice trade-off between soft and
hard threshold function in terms of amount of artifact removal
and signal distortion [46] and is given by

g(j, `) =

{
di,j |dj,`| ≤ tj,`
t2j,`

dj,`
|dj,`| > tj,`.

(2)

whereg(j, `) is the garrote threshold function at each decom-
position level of` for epochj, andtj,` denotes the threshold
value. It is from the fact that hard threshold function is
discontinuous that produces large variance (i.e. very sensitive
to small changes in the input data) and hence it induces artifact
itself when there is a spike-like transient artifacts. On the other
hand, soft threshold has large bias in the denoised signal which
results-in under-correction of artifacts. Therefore we decided
to choose Garrote threshold function which is a balanced
approach between hard and soft threshold and doesnt have
the mentioned disadvantages [46].
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To denoise the critical coefficients{dj,3, · · · , dj,8}, we have
used modified universal threshold reported by [45]

t′j,` = Kαj,`

√
2 ln N, (3)

where in (3) N is the length of epoch andαj,` is the
estimated noise variance forwj,` which is usually calculated
by following formula [23]

αj,` =
median(|wj,`|)

0.6745
. (4)

wherewj,` is the wavelet coefficient at thèth decomposition
level (i.e.wj,` = aj,` for approximation coefficient andwj,` =
Dj,` for detail coefficient.). The new parameterK in (4) comes
from the empirical observations [45]. It is given as

K =
{

KA (0 < KA < 1) for thresholding aj,8

KD (1 < KD < 3) for thresholding dj,`
(5)

where, K = KA is selected for thresholding approximate
coefficientaj,8 and selectK = KD to threshold all the detail
coefficients (dj,`, ` = 1, 2, · · · , 8). The tuning of parameter
K is discussed in Appendix A.

D. Decision

The most important part of our artifact removal algorithm is
stage-3, i.e.Decision. Depending upon this stage, the decision
of whether an epoch is to be detected as artifactual or seizure is
made. In addition, if there is possibility for an epoch to be both
artifactual and seizure, how carefully that particular epoch to
be denoised to remove artifacts, is also decided in this stage.
The first step of this stage is to measure the similarity between
epochs of decomposed coefficients{dj,3, · · · , dj,8} coming
from stage-2 and reference epochs ofxbp coming from stage-0.
The similarity is measured in terms of either correlation value
or mutual information. Depending on the similarity values, we
choose two levels of threshold: one is upper limitThigh and
the other one is lower limitTlow. Hence three conditions arise
which results in three decisions: if it is high likelyhood to be
a seizure, then denoising is not performed on that epoch; if it
is in between seizure and artifacts, then we carefully denoise
the epoch and finally if it is least likely to be seizure then
we fully denoise that epoch. A pseudo code for this decision
stage is provided in Table I. To double check apart from the
similarity based decision, we also take input from the output
of stage-1 where we have a highpass filtered epoch and its
threshold value. Since we assume that the epochxhp is less
likely to be seizure and most likely to be artifacts if the
value exceeds the calculated threshold valueThp, so if any
of the three decisions made from similarity based condition
contradicts with this hypothesis, then to be in the safe side,
the epoch is not denoised in order to preserve the seizure
events all the time. However, in such case, where the epoch
is actually artifactual and not seizure, but due to the decision
made not to denoise the epoch, we pay the penalty of less
artifact reduction.

TABLE I: Pseudo code for the separation of seizures from
artifacts. The decision is made by the similarity based thresh-
olding.

E. Reconstruction

In the final stage of reconstruction, based on the decision
stage, we either apply thresholding (fully or carefully) or let
the coefficients{dj,3, · · · , dj,8} remain same. Finally with all
the new set of coefficients obtained from stage-2 (i.e.d′j,1
- d′j,2and a′j,8) and the ones obtained from the first step of
this stage (i.e.{d′j,3, · · · , d′j,8}), we apply inverse SWT to
reconstruct the EEG epochs. Thus a new sequence of data so
called reconstructed datais obtained.

III. M ETHODS AND EXPERIMENTS

A. Data Collection

Real EEG recordings are downloaded from CHB-MIT Scalp
EEG Database [47] which was collected from the Children’s
Hospital Boston. The database consists of EEG recordings
from pediatric subjects with intractable seizures and the pa-
tients were monitored for up to several days. The signals
are sampled at 256 Hz with 16-bit resolution. Apart from
that, we have also performed some simple experiments to
record 32-channel EEG data with a healthy subject by using
the commercial Mitsar-EEG-202 recorder as shown in Fig.
3. The subject is asked to perform specific task in order to
record and characterize some common artifacts, e.g. chewing,
swallowing, head movement, body movement, eye blinking,
eye movement, etc. The timing of those tasks are noted down
and later confirmed with the corresponding recorded signals.

B. Data Synthesis

1) Semi-Simulated:We have synthesized an artifact-free
EEG sequence of 5 min long from real EEG collected from
CHB-MIT database as ground truth and different types of
simulated artifact waveforms to test our artifact removal al-
gorithm. The process of data synthesis is shown in Fig. 4.
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Fig. 3: EEG experiment performed.
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Fig. 4: Illustration of the synthesis process to generate artifac-
tual EEG data with seizure segment.

2) Fully-Simulated: In this dataset, we have simulated all
three data components: artifacts, seizure event and EEG back-
ground activity (i.e. EEG rhythm), and then combined them
together to make artifactual EEG dataset with seizure events.
The simulated EEG data have been generated according to
the classical theory of Event Related Potentials (ERP) as
described in [48]. The MATLAB code we used to generate
such simulated EEG is available to download for free from
[39].

IV. PERFROMANCEEVALUATION

A fair performance evaluation of any artifact removal al-
gorithm has often been an issue because of few reasons; e.g.
lack of ground truth data, insuffcicient amount of data used,
casual choice of performance metrics and so on. Therefore,
it is often seen that only qualitative evaluation is available
in time domain plot and/or in spectral domain in terms of
PSD plot [20], [22], [37], [49]. In order to have a fair and
complete evaluation, enough quantitative results are required
along with the traditional qualtitative approach. In addition,
further analysis of later stage signal processing is required to
observe the afteraffect of artifact removal. Hence this section
deals on the way of performance evaluation for both artifact
removal and seizure detection accuracy by quantitatively as
well as in qualitative manner.

To define the quantitative metrics used for artifact removal
and seizure detection, we definexref(n), xart(n) andxrec(n)
as the discrete time signals of lengthL representing clean
reference signal (artifact-free), artifactual and reconstructed
signal respectively. Then, the error signal before and after

artifact removal can be defined respectively as

ebr(n) = xart(n)− xref(n), (6)

ear(n) = xrec(n)− xref(n). (7)

In the sequel, we introduce the metrics used for artifact
removal and seizure detection in more detail.

A. Metrics for Artifact Removal

The performance of the proposed algorithm on the artifact
removal has been evaluated both in terms of the amount
of artifact reduction and the amount of distrotion it brings
into the signal of interest, specially to the seizure events.
Several efficiency metrics have been calculated in both time
and spectral domain to quantify such evaluation. In order to
have fair evaluation and clear idea we also have considered
the amount and duration of artifacts present in the signals.
The metrics are described as follows:

1) λ: The reduction in artifact is calculated using the fol-
lowing formula [18]

λ = 100
(

1− cref − crec

cref − cart

)
, (8)

Here,cref denotes the auto-correlation coefficient of the
reference signal at time lag 1,cart andcrec are the cross-
correlation coefficient between reference signal with ar-
tifactual and reconstructed signal respectively.

2) ∆SNR: Assuming the signals have zero mean, then
∆SNR is the difference in SNR before and after artifact
removal is given by the following formula [18]

∆SNR = 10 log10

(
σ2

xref

σ2
ebr

)
− 10 log10

(
σ2

xref

σ2
ear

)
, (9)

whereσ2
xref

, σ2
ebr

and σ2
ear

be the variance of reference
signal, error signal before and after artifact removal
respectively.

3) RMSE: The root mean square error is calculated as
follows

RMSE =

√√√√ 1
N

N∑
n=1

[ear(n)]2. (10)

4) Pdis: DenotePref(f), Part(f) and Prec(f) the power
spectral densities of reference signal, artifactual signal
and reconstructed signal respectively, the spectral distor-
tion Pdis is calculated as follows

Pdis =

Fs/2∑
f=1

(Prec(f))2

Fs/2∑
f=1

(Pref(f))2
. (11)

5) ∆Cor: Correlation is the measure of similarity between
two time series in time domain. In order to calculate
the improvement in correlation∆Cor due to artifact
removal, the following equation is used

∆Cor(%) =
crec − cart

cart
× 100 (12)
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wherecart and crec are the cross-correlation coefficients
between reference signal with artifactual and recon-
structed signal respectively.

6) ∆Coh: Coherence is the measure of similarity between
two time series in frequency domain and it is defined
between two signalsx(t) andy(t) as:

∆Coh =
|Gxy|2

GxxGyy
, (13)

where |Gxy| is the cross-spectral density betweenx(t)
and y(t); Gxx and Gyy are the auto-spectral density of
x(t) andy(t) respectively. Now, we assumeCohbef be
the coherence between reference and artifactual signal
while Cohaft be the coherence between reference and
recosntructed signal, then the average improvement in
coherence due to artifact removal denoted by∆Coh is
calculated by following equation:

∆Coh(%) =
Cohaft −Cohbef

Cohbef
× 100 (14)

7) SNDR: Signal to noise and distortion ratio in frequency
domain is calculated as follows:

SNDR = 10 log10

(
Pref

Per

)
. (15)

wherePref andPer are the power spectral densities of
xref (n) ander(n) respectively.er(n) is ebr(n) for before
andear(n) for after artifact removal respectively.

8) SNRart: Artifact SNR is calculated considering artifact
as signal and reference neural signal as noise using the
following formula

SNRart = 10 log10

(
σ2

ebr

σ2
xref

)
. (16)

9) ∆Tart: It denotes the artifact duration out of total data
length in percentage and calculated as follows

∆Tart(%) =
Tart

Ttotal
× 100, (17)

whereTart andTtotal are the time duration of artifact and
whole data sequence respectively.

B. Metrics for Seizure Detection

Seizure detection/classification still is an active research
problem in the epilepsy research community. There are several
seizure detection methods available in the literature and none
of them can claim to be robust for every patient and in every
recording/surrounding enovironment as most of them are eval-
uated based on small quantity of dataset and do not consider
the effects of all types of artifacts. However, since the purpose
of this study is not to develope a seizure detection algorithm
but to verify the performance of seizure analysis after the
proposed artifact removal algorithm is applied, therefore in
this section we will show some examples of simple seizure
analysis or measurement available in the literature to prove
the efficacy of the artifact removal algorithm.

Fig. 5: Process flow for validation of seizure detection.

1) Feature Extraction:Feature extraction is an improtant
stage for classification in machine learning on which both
classification performance and classifier complexity greatly
depends. There are many ways of extracting EEG features for
seizure classification that are mentioned in the literature [50]–
[53]. Most of them use the statistical features (e.g. entropy
[54], [55], kurtosis, skewness, line length [50], variance, min,
max, maxima count, etc.) either from directly time domain, or
from both time and frequency domain or even some combined
spatial (channel-wise) domain based features along with time
and frequency. Some recent literatures also use wavelet domain
based features to extract the desired frequency sub-bands [52],
[53]. In this paper, we use a single-dimension feature so called
Sample Entropy which is described below.

• Sample Entropy: Sample entropy or SampEn which was
introduced by [54], quantifies the complexity of a time se-
ries data and recently it has become an attractive measure
in analysing non-linear physiological signals [55]. Unlike
other entropy or complexity measures (e.g. approximate
entropy or ApEn), the advantage of SampEn is that it
is resistant to the short-duration transient interferences
like spikes. It is the negative natural logarithm of an
estimate of the conditional probability that if two sets of
simultaneous data points of lengthm match point wise
within a tolerancer then two sets of simultaneous data
points of lengthm + 1 also match pointwise within the
tolerancer and represented asSampEn(m, r,N) where
m, r andN are the embedding dimension, tolerance and
number of data points respectively [54].
We assume a time-series data epoch of lengthN =
x1, x2, x3, ..., xN ; a template vector of lengthm, such
thatXm(i) = xi, xi+1, xi+2, ..., xi+m−1 and the distance
function d[xm(i), xm(j)] for i 6= j. Now the number of
vector pairs in template vectors of lengthm andm + 1
having d[xm(i), xm(j)] < r are denoted byB and A
respectively. Thus the sample entropy is defined as

SampEn = − loge(
A

B
) (18)

where, A = no of template vector pairs having
d[xm(i), xm(j)] < r of lengthm + 1
and B = no of template vector pairs having
d[xm(i), xm(j)] < r of lengthm

2) SVM Classification:Support vector machine is a super-
vised learning based classifier which is widely used in simple
binary linear classification [56]. In our problem of classify-
ing seizure epoch from non-seizure epoch, we have used a
simple SVM classifier whose input is the extracted SampEn
feature. Initially the classifier is trained with the SampEn
values calculated from each epoch as training samples. The
benchmark epochs are obtained from reference signal where
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Chewing 
Artifacts

Eye Blink 
Artifacts

Fig. 6: The removal result after the proposed algorithm is
applied on our recorded EEG.

both artifact free seizure and artifact-free non-seizure epochs
have known label. Then the classifier is tested with SampEn
values calculated from artifactual signal epochs. Finally the
same designed classifier is again tested with the SampEn
values calculated from reconstructed signal epochs. In both
cases, the no. of true positives and false positives are recorded.
The process flow of seizure detection after artifact removal is
shown in Fig. 5.

• ∆F(%): If Fbef and Faft denote the number of false
positives for seizure classification before and after artifact
removal respectively, then the improvement in number of
false positives, i.e.∆F(%) is given by

∆F(%) =
Fbef − Faft

Fbef
× 100 (19)

V. RESULTS AND DISCUSSION

A. Qualitative Evaluation

1) Real Data: The proposed algorithm is applied to our
recorded EEG data from a healthy subject with labeledchew-
ing and eye-blink artifacts. The artifact removal result in
terms of time-domain plot is shown in Fig. 6 for qualitative
evaluation which suggests a satisfactory removal of both types
of artifacts without distorting the background EEG signals in
the non-artifactual region.

Another example of artifact removal result is illustrated in
Fig. 7 where there is an artifact-free seizure segment is present.
It is obvious from the time-course data that almost perfect
reconstruction of seizure activities occurs.

2) Semi Simulated:An example of artifact removal algo-
rithm applied on semi-simulated data is presented in Fig. 8.
The artifactual data sequence is made up with real seizure
and real background EEG data where simulated artifacts are
superimposed. Its obvious that the algorithm can’t remove all
of the artifacts all the time, but can reduce them significantly
most of the time and more importantly can still preserve
the desired seizure activities pretty well. This qualitative
illustration in time domain data shows a better visualization
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Fig. 7: The removal result after the proposed algorithm is ap-
plied on an artifact-free seizure segment labeled and collected
from MIT-CHB dataset. The reconstruction is almost perfect
when there is no visible artifact.
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Fig. 8: The removal result after the proposed algorithm is
applied on the semi-simulated EEG data.

to detect seizure offline after significant reduction of most of
the artifacts as usually done by the clinicians.

3) Fully Simulated:The artifact removal result from a fully
simulated data is illustrated in Fig. 9 where all three signal
components are simulated. The synthesized artifactual data is
severely contaminated with different types of artifacts and thus
makes it difficult to detect the segment of seizure activities
properly. Once most of the artifacts are reduced, its now easy
to detect seizure segment which also increases the true positive
detection.

Another example of all six types of simulated artifacts and
their reduction is shown in Fig. 10. Here each plot shows each
type of artifact contaminated segment before and after artifacts
are removed along with the reference artifact-free segment.
This qualitative illustration proves that most of the time when
there is no seizure, the algorithm can significantly reduce each
type of artifacts.
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Type – 0 Artifact
(Similar to Eye Blink)

Type – 3 Artifact
(Similar to Electrode 

Pop)

Type – 4 Artifact
(Similar to Chewing)

Type – 2 Artifact
(Similar to Eye 

Movement)

Type – 1 Artifact
(Similar to Cable/
Body Movement)

Type – 5 Artifact
(Similar to Motion)

Fig. 10: Six types of different simulated artifacts that mimicking real artifacts found in the typical scalp EEG recording
environments. The application of proposed artifact removal algorithm can almost successfully remove such artifacts most of
the time without distorting the background EEG signals. The black, red and blue traces denoting reference, artifactual and
reconstructed simulated EEG data respectively. The y-axis is normalized signal amplitude and x-axis is time index with sampling
frequency of 256 Hz.
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Fig. 9: Artifact removal result applied to semi-simulated
dataset-1. The plot is a time course data where all six types
of artifacts are present. Note that, not all of the artifacts are
removed or attenuated. The reason is that in order to preserve
the seizure events, the amount of artifact reduction has been
compromised. The y-axis unit is normalized signal amplitude.

B. Quantitative Evaluation

This sub section quantifies the results obtained both in terms
of artifact removal and the consequence of artifact removal,
i.e. improvement in seizure detection.

1) Artifact Removal Results:As discussed in Section-V, we
have calculated several time and frequency domain metrics to
quantify both amount of artifacts removed as well as amount
of distortion made with respect to both amount and intensity
of artifacts present in the data. Fig. 11 shows the calculated
SNDR over the entire frequency bandwidth of EEG data
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Fig. 11: SNDR for signals before and after artifact removal
clearly shows the improvement in signal quality over the entire
frequency band.

for fully simulated data sequence as in Fig. 9 before and
after artifacts are removed. It is clearly seen that a significant
improvement ofSNDR on an average of 5-10 dB over the
entire frequency is made due to artifact removal which proves
the efficacy of the proposed algorithm. Table II presents the
quantitative metrics of artifact removal with respect to the
strength of artifacts, i.e. different artifact SNRSNRart. Table
III presents the quantitative metrics of artifact removal with
respect to different artifact duration∆Tart.

2) Comparison with Other Methods:We have compared
the performance our proposed method with few state-of-the-
art artifact removal methods (i.e. wavelet-BSS and EMD-BSS
based methods) in terms of both quantitative removal metrics
(Figure 13) and computational time (Figure 14) to roughly
illustrate a comparison the efficacy of our method compared
with others. The process flow of wavelet-BSS and EMD-BSS
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Fig. 14: Comparison of proposed method with respect to few
available artifact removal methods in terms of the compu-
tational time required to process each 1 second of data in
MATLAB simulation.

based methods is shown in Figure 12. Note that the epoch-
by-epoch processing is only applied for our proposed method
and for others we just process the whole sequence at once as
it’s difficult for BSS-based methods to function properly to
separate components with small duration of data (i.e. epoch).

3) Seizure Detection Results:In order to show that artifact
removal by this proposed algorithm not only makes offline
analysis during seizure detection easier and more accurate,
but also helps the availabe automated seizure detector (ASD)
to improve their performance significantly. An example of
false alarms due to artifacts is presented in Fig. 15. Here
we present three sequences of fully simulated EEG data:
reference, artifactual, reconstructed and their corresponding
SamEn values calculated with 2-sec time window. For an ideal
case, i.e. without artifact, seizure and non-seizure segments can
be easily separated by comparing their average sample entropy.
However, in practice, EEG sequence is always contaminated
with different artifacts and hence it may introduce some
false alarms due to artifacts. Once most of the artifacts are
reduced, the no. of false alarms is also reduced significantly
as illustrated clearly in the Fig. 15.

A quantitative representation of amount of improvement in
seizure detection is illustrated in Fig. 16 where the no. of false
positives are plotted for both before and after artifact removal.
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Fig. 16: False positive (FP ) before and after artifact removal
(shown on top) and improvement of false positive (∆FP )
in percentage (shown on bottom) are plotted with respect
to different data sequence/channel no. For seizure detection
purpose, SampEn is used as feature and SVM as classifier.

In addition the corresponding improvement in∆F(%) which
suggests that on average 20-80% improvement is possible after
artifacts are reduced by proposed algoirthm. Please note that,
for this quantification we have simulated 100 different data
sequences each of 200-sec duration where 100-sec is seizure
and rest 100-sec is non-seizure segment. Then for each epoch
of 2-sec, SampEn is calculated and used as a feature for SVM
classification to quantify the no. ofFP . The no. ofTP in
this simulation remains always 100% due to the single feature
selection. However, these values are not absolute and may
differ depending on the type and size of features, type of
classifier used, length of the seizure segment, epoch duration
and so on. The results are given only for simple understanding
of the fact that artifacts removal with proposed algorithm can
significantly improve the performance of seizure detection.

Fig. 17 shows some common statistical features used in
literature for differentiating seizure epochs from non-seizure
ones for both before and after artifact removal. It is obvious
from the plots that after artifact removal, the features are
easier to distinguish than before artifact removal. Hence the
proposed algorithm can also be useful in improving seizure
detector performance in other seizure detection algorithms
where combination of different statistical features are used for
classification.

VI. CONCLUSIONS

The purpose of this research was to develop an artifact
removal method in order to make the seizure analysis process
easier for the clinicians and also to improve the performance
of the available automated seizure detection algorithm. In
addition, such artifact removal which preserves the seizure
events, can greatly reduce the labor and complexity of seizure
detection by making it easy to analyze underlying signal
of interest. To ensure a fair performance evaluation of the
proposed method, we performed extensive simulations on both
real and synthesized data with several metrics to quantify
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Fig. 12: General Process Flow of EMD-BSS and Wavelet-BSS Methods
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Fig. 15: An example of false alarms due to artifacts is illustrated where sample entropy is chosen as a feature to separate
seizure from non-seizure (normal) events. Artifact removal can significantly reduce the false alarms by reducing the amount
of artifacts. The y-axis unit is normalized signal amplitude in the top plots.

results. Also an analsyis of a simple seizure detection proves
the efficacy of the method that seizure detection accuracy
can be significantly improved. The results are impressive and
further improvement of the current algorithm to be able to
remove artifacts in real-time will surely be a breakthrough in
epilepsy patients monitoring. It is, therefore, expected to have
more analysis on this particular research to enhance the quality
of epilepsy patients by ensuring proper seizure diagnosis and
treatment.

APPENDIX A
TUNING OF PARAMETERK

The tuning of parameterKA depends on the data distri-
bution of aj,8 epoch which less likely contains any seizure
events (since its frequency band is 0-0.5 Hz), but contains both
thedeltawave and some low-frequency artifacts (mostly large
amplitude slow movement artifacts). So when the histogram
of the data has large deviation from its standard deviation
(large tail on the histogram on either one side or both), it
is more likely due to presence of such artifacts. Therefore a
value less than 1 is chosen forKA and if there is no such
unusual tail present, thenKA = 1 is chosen that makes the
threshold exactly same as the original universal threshold, i.e.
t′j,` = tj,1. The criterion for the choice ofKA is given below

KA =

{
1 if max(|Aj,8|) > m× σj ,

0 ≤ kA < 1 otherwise,
(20)

whereσj denotes the standard deviation ofAj,8. The value
of m is based on the parameter tuning and can be obtained
from some initial several seconds of incoming rawEEG data
samples to update the threshold value. From the empirical
studies, the value of m is found as minimum of 3, i.e.
3 < m < ∞ (See Appendix A of [45]).

In order to calculate the value ofkD, Decisionstage helps.
SinceDj,1 andDj,2 contains higher frequency activities than
the seizure frequency band (see Fig. 2), therefore value of
kD for first two detail coefficients is selected as 1, i.e. same
as universal threshold. For rest of the detail coefficients, (i.e.
{Dj,3, · · · , Dj,8}) the value is chosen based on the decision
stage’s output as shown in I. The equation is given below:

KD =


3 case-1

1 < kj,` ≤ 1.5 case-2

1 case-3

where` = 3, 4, · · · , 8

(21)
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Fig. 17: Different features from EEG data for seizure and non-seizure events calculated for each data segment of time window
1 sec.

TABLE II: Quantitative Metrics of Artifact Removal Results for Different Artifact SNR (SNRArt).

SNRArt (dB)
Performance Metrics

λ ∆SNR ∆RMSE (%) ∆PSDdis (%) ∆Corr (%) ∆Coher (%)
5 62.3 8.5 62.2 90.5 63.8 25.5
10 48.5 9.6 67.1 98.8 110.5 53.8

TABLE III: Quantitative Metrics of Artifact Removal Results for Different Artifact Durations (∆TArt).

∆TArt (%)
Performance Metrics

λ ∆SNR ∆RMSE (%) ∆PSDdis (%) ∆Corr (%) ∆Coher (%)
20 44.3 7.8 75.9 98.8 84.5 46.7
25 57.0 8.6 66.5 97.8 75.5 29.8
30 66.2 9.1 51.7 86.3 67.9 30.2
35 57.8 10.8 49.9 99.9 139.7 45.9
40 68.8 11.1 61.1 99.6 113.5 30.7

Mean 30.87% Mean 54.71% Mean 8.27% Mean 63.92% Mean 97.55% Mean 98.91% Mean 43.05%

detection and affect of artifacts on seizure detection from an
Electroencephalogist’s point of view.
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