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ABSTRACT

We evaluated several parametric estimators for estimating the difference in
means of two populations. Estimators include the ordinaryv-t, two versions
proposed by Welch (1938) and Satterthwaite (1946), three versions proposed by
Zhou and Dinh (2005), Johnson and Hall. A simulation study has been made to
compare the performance of the selected estimators. Some real life business
examples have been considered to illustrate the application of the methods. Based
on our findings, some possible good parametric interval estimators have been
proposed for future researchers, applied workers and other professionals.

Keywords: Average Width, Coverage Probability, Chi-square Distribution,
Interval Estimator, Simulation Study, Skewed Population

INTRODUCTION

Skewed data are commonly used in various fields of modeling such as health
science (Baklizi & Kibria, 2009; Banik & Kibria, 2010; Zhou et al., 2001),
environmental science (Mudelsee & Alkio, 2007), biological science (Andersson,
2004, Gregoire & Schabenberger, 1999), engineering science and others. There is
often an interest of the researcher for making inference about the differences of
important measures, such as, location, scale, skeweness, kurtosis and other
parameters for two independent populations. This inference can be made by
constructing a confidence interval (CI) or hypothesis testing about a population
parameter. Confidence interval is an interval estimate that will capture the true
parameter value in the repeated samples. A convenient way to perform significance
test is to compute a confidence interval for the parameter and accept the alternative
hypothesis if the assumed parameter lie outside the confidence interval. In this
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paper, our interest is to consider the problem of comparing two independent groups
in terms of measure of location. Generally, people use the normal theory to
construct confidence interval for making inferences about the difference in means
of two independent populations. However, in practice, the normality assumption
may not be appropriate for a lot of real data. For example, a lot of health related data
are skewed (Baklizi & Kibria, 2009; Zhou et al., 2001). Confidence intervals based
on ordinal-t statistic suffer when samples come from skewed populations. There are
several methods readily available to overcome this problem. Some of them are
based on correcting the studentized t-statistic with higher order terms. Some of
used the bootstrap technique. Recently Baklizi and Kibria (2009) propose a
two-sample confidence interval based on the concept, median describes the center
of the distribution best. Since several researchers proposed several confidence
intervals for the difference of two means at several times and under different
simulation conditions, their comparisons are not comparable as a while. In this
paper, we evaluate scveral existing parametric techniques and compare them under
the same simulation conditions in terms of the attainment of the nominal values of
confidence intervals.

The organization the paper is as follows: The considered interval estimators are
described in section 2. A simulatton study along with results is discussed in section
3. Real life data are analyzed in section 4. Finally, some concluding remarks are
given In section 5,

STATISTICAL METHODOLOGY

A brief description of the considered estimators is given in this section. Let
XisX3s oo, X and vi,v5, ..., v, be two independent random samples from two
populations with means u, and p, respectively. We want to construct confidence
interval for the mean difference of p,-p,. Let X and ¥ are the sample means and s;2
and s,? are the sample variances.

Ordinary t Method
For small samples, the commonly used t-based confidence interval for p,-p; is defined as
e 5P — I
LCL=(x-¥%) t%‘anH . + . and UCL=(Z—¥) + t?nwnz_2 o + 5

For large samE)les, the corresponding CLT-based confidence interval for pi-u5 is

2
LCL = (R~ §) —ze |5 + L and UCL = (R — ) + 7a |5 + &
NI Dz SNy Ny
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When population variances are equal, a confidence interval based on the
z-distribution/t-distribution with pooled variance is appropriate.

Welch-Satterthwaite (WS) Method
Welch (1938) and Satterthwaite (1946) proposed confidence intervals of the

difference between two means for non-normal and unequal variances situations.
They proposed two intervals, given as follows:
When underlying distribution is normal

The interval is defined as follows:

Y v 5% 5% = - Si s%
LCL = (X = 9) = tar -+ 2 and UCL = (R - §) + tor 1+ 2
2

(wq+w;y)? 2 5
where df = ——~—*5~, w; = —andw, = =%
w1 Wa ny na

When underlying distribution is not normal
Literatures (Reed & Strak, 1996; Cressie & Whitford, 1986) show that the
coverage probability for the WS interval can be much lower than its nominal level
if samples come from skewed distributions. For skewed distributions, taking
logarithm usually makes the distribution more symmetric. If the underlying
distribution is not symmetric, apply the WS CI to the log-transformed data and
finally adjust the interval to its original scale. A brief description of the procedure
1s as follows:
(a) Transform x; to log(x;+¢c,) and y; to log(y;+c,), where ¢, and ¢, are constants
to make sure x;+¢,>0 and y;+c,>0.
(b) Apply the WS interval to log-transformed data.
Let [Llog, Ulog] be the WS CI obtained from log(x,+cy), log(xa+c,), ..., log(x,+¢,) and
log(yitcy), log(yzte,), ..., log{ymtcy). The proposed 100(1-a)% CI for pi-p; 13
LCL = y(e"°8 — 1} + (cyelM°8 —c,) and UCL = F(e"'°8 — 1) + (c,eV'8 — ¢,)

Zhou and Dinh Method

Zhou and Dinh (2005) modified two-sample t-statistic to obtain better coverage
when observations come from skewed distributions. The 100(1-6)% CI for the
difference p,-u, is given by

- - 1.1 20 o sy Ly ol ~
LCL = (®— ) - NoT; (N “ex) B and UCL = (% - §) + N¢T;* (N ea) 6
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Where N =ny+n;
A=A {1 +32A(t— Eﬁ)}% - GR)™
()= (2 EN"E-A) log {22 N‘EA( N-lg")_ +1}
Tt () = {1 +3(t— N-lgﬁ)} =1
__ @sin - @i,
()52 + @)™

e AR LS WL

(nj—1)(nj—2)

:ta-

2 2
S_1+i7;
ny

n2.

g=@(a) is the CDF of the standard normal distribution and ¢ =

Johnson Method

Johnson (1978) proposed using the first few terms of the inverse Cornish-Fisher
expansion of the t-statistic. The modified 100(1-0)% CI for p;-p, takes the
following form

i 2
LCL = (X — y)+( 2 )+(3,64)(x—y)2 b g 2+ o

6NG2 ny Ny
R o sweni M3 Hz 2 si . 5%
Ul == (6N”2) b (3"&4) i

Where fi; = (“31) (“32) and fi; is an estimate of the third central moment of the ith

populations.

Hall Method

In the presence of positive skewness with Hall (1992) transformation, one gets
Johnson CI
= Fs s BT ﬁz _=\3 gk g%
Lelr=oe =g~ (6N02) i (ﬁ) =gt (27"*3) L e TR
~2
2

6NG? n1 n;
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SIMULATION STUDY

Since a theoretical comparison is not possible, a simulation study has been
conducted to compare the performances of the interval intervals in this section.

Simulation Technique

The performance of the intervals is assessed in terms of their attainment of the
nominal error rate a and the symmetry of the lower and upper error rates. The
widely accepted level, a=0.05 is used in all our simulations. To compute the
intervals, we generated data from the following parent distributions:

(1) Symmetric equal distributions: Both samples are generated from N(10,3).

(2) Symmetric unequal distributions: Two samples are generated from (N(5,3)
and N(8,5)).

(3) Asymmetric with the same shape distributions: Both samples are generated
from 2.

(4) Asymmetric with the different shape distributions: x? and 3.

&

The sample size combinations are used (5, 10), (20, 20), (30, 40), (50, 50) and
(100, 100). In each case, S000 samples are generated and for each samples. In
order to compare the performance of the various intervals, the following criteria
are considered: coverage probabilities (lower, cover and upper) and mean widths
of the resulting confidence intervals. The lower (upper) error probabilities of a
confidence interval are calculated as the fraction out of 5000 samples that resulted
in an interval that lies entirely below (above) the true value of the parameter. The
coverage probability is found as the sum of the lower rate and upper rate and then
subtracted from total propability 1. It is well known that if n is large, the coverage
probability will be exact or close to 1-a. So the coverage probability is a useful
criterion for evaluating the confidence interval. Another criterion is the width of
the confidence interval. A smaller width gives a better confidence interval. It is
obvious that when coverage probability is same, a smaller width indicates that the
method is appropriate for the specific sample.
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RESULTS DISCUSSION

To compare the performance of the estimators, first we generated random
samples from two symmetric equal distributions. Here we considered DGP as
N(10,3) for both populations. The simulated results are reported in Table [. From
this we see that for all sample sizes, all proposed estimators except ZD1 and ZD3
attained the nominal level 0.95 and the symmetry of lower and upper error rates.
Among ZD1 and ZD3 estimators, we noticed the ZD1 estimator performed poorly
in the sense of attainment of the nominal size 0.95. In Table II, we have reported
performances of the considered estimators when random samples are gencrated
from two symmetric unequal distributions i.e. N(5,3) and N(8,5). As compare to
Table I, we observe better performances for the attainment of nominal confidence
level for all proposed estimators. However, ZD1 and ZD3 estimators have poor
coverage probability. It is noted that estimators in Table II have higher coverage
probabilities than the performances listed in Table I. This 1s because, Table I has
the wider widths compared to Table 1. Our next plan is to observe how our
proposed estimators perform when both are from skewed populations. In this
regard, we generated random samples {(with unequal sample sizes) from skewed
distribution with a range of skewness, ranging 1.63—2.83 and are reported them in
Tables III-IV. In Table III, we reported performances of the estimators when
sampling are from asymmetric equal distributions, namely X2 with skewness 2.0.
We found that ordinary t, WS1, WS2, John and ZD2 have good coverage
probability. ZD1 and ZD3 coverage probability increasing as size increases and
have better performances as compare to the symmetric distributions (Table 1 and
Table II). Hall statistic suffers coverage probability deficiency as compare to
symmetric distributions. In Table IV, we reported performances of the estimator
in the presence of highly skewed populations. In this respect, we generated
random samples from 42 with skewness 2.8284 and y; with skewness 1.6330.
We observed that t, WS1, John are performing better than WS2, ZD1, ZD2, ZD3
and Hall in the sense of attained nominal level. WS2, Hall and ZD3 are
performing worse compare to the rest.
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APPLICATIONS - REAL LIFE EXAMPLES

In this section we consider two real life examples to test the performance of the
considered estimators in case real life situations.

Example 1

Suppose the manufacturer of a compact disc player wanted to know whether a
10 percent reduction in price is enough to increase the sales of their product (Lind
et al., 2002). To investigate, the owner randomly selected eight outlets and sold the
disc player at the reduced price. At seven randomly selected outlets, the disc player
was sold at the regular price. Reported below is the number of units sold last month
at the sampled outlets.

Regular price: 138, 121, 88, 115, 141, 125, 96
Reduced price: 128, 134, 152, 135,114, 106, 112, 120

2F 4
1- ‘ I |
[+] l I L
8 100 1o e} 4G 15
]

BS N 1 1 L
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Figure [ - Histogram and QQ plot of regular price of compact disc

The summary statistics of regular price data are as follows: mean =117.7143,
median =121 and skewness = -0.3442. From these summary statistics and the
histogram and Q-Q plots in Figure I, we may conclude that the regular price data
are not normally distributed. The summary statistics of the reduced price data are as
follows: mean =125.1250, median= 124 and skewness =0.4587. From these
summary statistics and the histogram and Q-Q plots in Figure II, we may conclude
that the reduced price data are positively skewed.
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Figure Il - Histogram and QQ plot of reduced price of compact disc

To verify the price reduction resulted in an increase in sales, the 95%
confidence intervals for the mean difference of the regular price data and the
reduced price data and the corresponding widths for the proposed estimators are
given in the Table V. From this table, we observed that all proposed intervals
indicated that the population means are different. However, ZD3 has the shortest
width, followed by ZD2, John, t, Hall, WS1, W82 and ZD1 respectively.

Table V: The 95% Confidence Intervals and Widths for the Mean Differences of
Regular Price Data and Reduced Price Data

Estimators Confidence interval Width

t-interval -12.1389 26.9603 39.0992
WSI1 -12.4767 27.2981 39.7749
WS2 -12.8871 34.4585 47.3456
ZD1 -91.1051 1059266 197.0317
ZD2 -12.0959 269174 39.0133
ZD3 -5.1839 20.0054 25.1893
John -12.2754 26.8238 39.0992

Hall 122787 26.8205 39,0992
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Example 2

Suppose the commercial Bank and Trust Company is studying the use of its
automatic teller machines (ATMs) (Lind et al., 2002). Of particular interest is
whether young adults (under 25 years) use the machines more than senior citizens.
To investigate further, samples of customers under 25 years of age and customers
over 60 years of age were selected. The number of ATM transactions last month
was determined for each sclected individual and the results are shown below:

Under 25: 10,10, 11,15,7,11, 10,9
Over 60: 4,8,7,7,4,5,1,7,4,10,5

The summary statistics of under 25 data are as follows: mean = 10.3750,
median = 10 and skewness = 0.7663. From these summary statistics and the
histogram and Q-Q plots in Figure III, we may conclude that the under 25 data is
positively skewed. The summary statistics of the over 60 data are as follows: mean
= 5,6364, median = 5 and skewness = -0.0663. From these summary statistics and
the histogram and Q-Q plots in Figure IV, we may conclude that the aver 60 group
data 1s skewed.

2 Pion of Sargke Dala versn Sancard Mormal
1 T T T T T T T a T T T T T T T

Cxmrllas of NPt Secis
a o
T

7 a & 10 1 12 13 4 15 2 B3 -1 o5 - a8 1 15 z

Unciar 26 {The numbes of ATM Transactions

Figure Il - Histogram and QQ plot of under 25
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The 95% confidence intervals for the difference between the two means of the
under 25 and over 60 are given in Table VI. From this table, we observed that all
proposed intervals showed that the population means are different. However, WS2
has the shortest width, followed by ZD3, ZD2, John, t, Hall, WS1 and ZD!
respectively.

00 Plot of Sample Data versus Standard Momal

Quaniiles of Inpul Sample
o
T
1

1 g I I 1 1 1 1
1 2 3 4 5 & ? B 3 10 -2 15 -1 0.5 il 05 1 1.5 2

Qrvar BO [Tha number of ATM Transachons Standard Normai Quanlifes

Figure IV - Histogram and QQ plot of over 60

Table VI: The 95% Confidence Intervals and Widths for Mean Differences of

Under 25 and Over 60
Estimators Confidence interval Width
t-interval -7.0734 -2.4039 4.6695
WS1 -7.0851 -2.3922 4.6930
WS2 -4.3128 -1.6928 2.6201
ZD1 -10.2452 0.7679 11.0131
D2 -6.7383 -2.7390 3.9993
ZD3 -6.2940 -3.1832 3.1108
John -7.0566 -2.3871 4.6695

Hall - -7.0271 -2.3576 4.6695
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CONCLUSION

In this paper some estimators for estimating the differences between two
skewed population means are considered. A simulation study has been conducted
to compare the performance of the proposed interval estimators. Two real life
business examples have been analyzed to illustrate the application of the
considered confidence intervals. We considered the following estimators, namely,
the ordinary-t, two versions of the Welch-Satterthwaite method, three versions of
the Zhou and Dinh method, the Johnson method and the Hall method. Conclusions
have been made based on coverage probability and width of the intervals, Our
findings indicated that the considered estimators have good coverage probability
and shortest width for symmetric and also for skewed distributions, In the presence
of moderate and skewed populations, Johnson, Hall, and ZD can be chosen. In the
presence of symmetric distribution, the ordinary-t, WS estimators can be chosen.
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Table I: Coverage Probabilities when DGP from Symmetric Equal Distributions:
N(10,3} with Skewness 0.0

Rate t WSl wWS2  ZD1 ZD2  ZD3  John Hall
n;=3 and n,=10
Lower 0.0330 00272 00188 02704 00846 0.1802 0.0330 0.0332
Cover 09388 093502 09550 04576 0.8982 (0.8056 09384 09374
Upper 0.0282  0.0226 0.0262 0.2720 0.0172 00142 0.0286 0.0294
MW 6.8404 7.3606 8.7664 16274 64618 43685 6.8404 6.8404
n;=20 and n,=20
Lower 0.0244 00244 0.0232 02620 00472 0.0388 0.0248 0.0244
Cover 09520 09320 09532 04884 09330 09612 09518 0.9514
Upper 0.0236  0.0236 0.0236 0.2496 0.0198 0.0000 0.0234 0.0242
MW 3.8167  3.8233 45699 12463 3.7003 2.8889 3.?16? 38167
n1=30 and ny=40
Lower 00216 0.0216 00174 0.2446 0.0356 0.0214 0.0220 0.0224
Cover 09520 09522 09546 05146 09450 0.9786 009514 0.9516
Upper 0.0264 0.0262 0.0280 0.2408 0.0194 0.0000 0.0266 0.0260
MW 2.8809 28867 34808 93346 28316 2.319 2.8809 2.8809
ny=50 and ny;=50
Lower (L0258  0.0258 00260 0.2316 0.0336 0.0068 00258 0.0248
Cover 09488 09488 09510 05516 09448 09932 09488 (.9496
Upper 00254  0.0254 00230 02168 0.0216 0.0000 0.0254 0.0256
MW 23714 23720 28532 7.6389 23425 19703 23714 23714
n;=100 and n; =100
Lower 0.0242  0.0242 00234 0.1822 0.0326 0.0010 0.0242 0.0238
Cover 09472 09472 09514 06460 09458 09990 09472 0.9462
Upper 0.0286 0.0286 0.0252 0.1718 0.0216 0.0000 0.0286 0.0300
MW 1.6691 1.6692 20223 53853 1.6590 1.4552 1.6691 1.6691

Note: t — Ordinary t, WS1- Welch-Satterthwaite, ZD1 — Zhou and Dinh 1, ZD2 — Zhou and

Dinh 2, ZD3 - Zhou and Dinh 3, John- Johnson, Hall — Hallm MW — Mean Width
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Table 1I. Coverage Probabilities when DGP from Symmetric Unequal Distributions:

N(5,3) and N(8,5) with Skewness 0.0

Rate t WSl W52 ZD1 ZD?2 ZD3 John Hall
n;=3 and n;=10
Lower 0.0234 0.0244 0.0074 02638 0.0680 0.1280 0.0250 0.0254
Cover 09502 09518 09742 04902 09184 0.8672 0949 0.949¢6
Upper  0.0244 0.0238 0.0184 0.2460 0.0136 0.0048 0.0254 0.0250
MW 8.8156 9.0228 17.782 23626 8.1964 56321 RBBI156 R.ABI56
n;=20 and n,=20
Lower 0.0236 00230 00066 02410 00484 00546 0.0238 0.0232
Cover 09506 09516 0982 05122 09334 09448 09504 0.9502
Upper 0.0258 0.0254 0.0072 02468 0.0182 00006 0.0258 0.0266
MW 52213 52633 7.6845 17.184 5.0664 39522 52213 52213
n;=30 and n,=40
Lower 0.0230 0.0230 00034 02412 00336 0.0140 0.0230 0.0224
Cover 09534 0.9534 09904 (0.5178 09450 (9860 09534 0.9538
Upper 0.0236 0.0236 0.0062 02410 0.0214 00000 0.0236 0.0238
MW 3.8291 3.8335 55893 12345 3.7614 3.0827 38291 3.8291
n;=50 and n>=50
Lower 00244 00244 00072 02136 0.0382 0.0148 0.0244 0.0244
Cover 0.9516 09522 09862 (.5634 0.9452 09852 09518 (.9522
Upper 0.0240 0.0234 00066 02230 0.0166 0.0000 0.0238 0.0234
MW 32599 32693 45619 10.542 3.2206 27086 3.2599 3.2599
n;=100 and n; =100
Lower 00228 00228 0.0056 0.1916 0.0270 0.0040 0.0228 0.0224
Cover 09524 09526 09862 06260 09506 09960 09524 09522
Upper 0.0248 0.0246 00082 0.1824 0.0224 0.0000 0.0248 0.0254
MW 22969 23001 3.1759 74192 22830 20026 22969 2.2969

See Footnete of Table 1
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Table HI: Coverage Probabilities when DGP from Chi-square Distribution with 2

df with Skewness 2.00
Rate t WS1 Ws2 D1 D2 ZD3 John Hall
m=5 and n,=10
Lower 00432 0.0352 00174 0.1960 00538 02286 0.0488 0.0126
Cover 09408 09560 09536 0.6094 09318 0.6822 (09376 0.8686
Upper 0.0140 0.0088 0.0290 0.1946 00144 0.0892 0.0136 0.1188
MW 43665 47583 10.611 83546 3.9910 27660 43665 4.3665
n,=20 and n,=20
Lower 0.0230 0.0230 0.0222 01798 0.0120 0.2228 0.0242 0.0208
Cover 09528 0.9528 0.9562 0.6354 09756 07316 0.9506 0.9072
Upper 00242 0.0242 00216 0.1848 0.0124 0.0456 0.0252 0.0720
MW 2.5052 25167 37560 69731 24517 1.8963 2.5052 2.5052
n;=30 and n,=40
Lower 0.0268 0.0268 00208 0.1852 00118 0.1216 0.0292 0.0234
Cover 09498 (09500 095498 06706 0.9732 (08190 09468 09222
Upper 0.0234 0.0232 0.0294 0.1442 0.0150 0.0594 0.0240 0.0544
MW 1.9004 19062 26651 57003 18390 1.5245 1.9004 1.9004
n;=50 and n,=50
Lower 0.0258 0.0258 0.0246 02020 0.0104 0.1888 0.0266 0.0596
Cover 0.9496 0.9496 09486 0.6852 09730 0.7844 (.9478 0.9282
Upper 0.0246 0.0246 00268 0.1128 0.0166 00268 0.0256 0.0122
MW 1.5726 1.5740 21487 5.1798 15566 13069 1.5726 1.5726
n;=100 and n, =100
Lower (.0232 0.0232 0.0284 0.1604 00070 0.1366 0.0236 0.0246
Cover 0.9524 09524 09448 0.6916 09698 08486 09510 0.9328
Upper 0.0244 0.0244 0.0268 0.1480 0.0232 0.0148 0.0254 0.0426
MW 1.1076 1.1078 1.4657 3.6801 1.1012 09657 1.1076 1.1076

See Footnote of Table I
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Table 1V: Coverage Probabilities when DGP from Chi-square Distribution with 1
df with Skewness 2.8284 and 3 df with Skewness 1.6330

Rate t W51 W82 D1 ZD2 D3 John Hall

n;=5 and n;=10
Lower 0.0182 0.0180 0.4582 0.1600 0.0462 0.5334 0.0194 0.0052
Cover 0.9554 09566 05418 07026 09438 04646 0.9478 0.8434
Upper 0.0264 0.0254 00000 0.1374 00100 00020 00328 0.1514
MW 40936 42615 85200 7.1477 4.2473 26195 4.0936 4.0936

n;=20 and n,=20
Lower 0.0170 00164 03342 0.1416 00436 05024 00174 00146
Cover 09450 09468 0.6658 07030 09420 04892 09442 09180
Upper 0.0380 0.0368 0.0000 0.1554 0.0144 0.0084 0.0384 0.0674
MW 24969 25263 1.1178 6.4269 25936 1.9067 24969 2.4969

n;=30 and n,=40
Lower 0.0158 0.0158 02400 0.1316 0.1416 04494 00178 0.0142
Cover 09566 09566 07600 07222 07030 05302 09546 0.9330
Upper 0.0276 0.0276 0.0000 0.1462 0.1554 0.0204 0.0276 0.0528
MW 1.8288 1.8338 0.8105 6.1985 6.1985 1.8401 1.8288 1.8288§

n;=50 and n,=50
Lower 0.0190 00186 00892 0.1302 0.0366 03136 0.0204 0.0198 |
Cover 0.9440 09450 0.8968 0.7330 09476 06238 09428 09340
Upper 0.0370 0.0364 00140 0.1368 00158 0.0626 0.0368 0.0462
MW 1.5781 1.5840 0.6067 5.8311 1.0062 13199 15781 1.5781

n;=100 and n; =100

Lower 0.0188 0.0188 00212 0.1348 (.0354 00234 0.0190 0.0224
Cover 0.9478 09478 0.9788 0.7460 0.9520 09652 09542 0.9502
Upper 0.0334 0.0334 00000 0.1192 00126 00114 00268 0.0274
MW 1.1093  1.1112 04045 44055 1.1213 09722 1.1093 1.1093
See Footnote of Tabie I




